About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 567872, 12 pages
http://dx.doi.org/10.1155/2012/567872
Research Article

Refined Qingkailing Protects MCAO Mice from Endoplasmic Reticulum Stress-Induced Apoptosis with a Broad Time Window

1College of Basic Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
2Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China

Received 13 November 2011; Revised 2 January 2012; Accepted 3 January 2012

Academic Editor: Hao Xu

Copyright © 2012 Fafeng Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fisher, G. Feuerstein, D. W. Howells et al., “Update of the stroke therapy academic industry roundtable preclinical recommendations,” Stroke, vol. 40, no. 6, pp. 2244–2250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Fisher, D. F. Hanley, G. Howard, E. C. Jauch, and S. Warach, “Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes,” Stroke, vol. 38, no. 2, pp. 245–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Beijing University of Chinese Medicine, “The study of novel dosage form of An Gong Niu Huang Wan,” Journal of New Medicine, vol. 8, no. 12, 1975.
  4. F. F. Cheng, W. T. Song, and S. Y. Guo, “Meta-analysis of clearing heat and removing toxicity therapy on ischemic stroke,” Pharmacology and Clinics of Chinese Materia Medica, vol. 27, no. 1, pp. 106–109, 2011.
  5. X. Chen, O. M. Zack Howard, X. Yang, L. Wang, J. J. Oppenheim, and T. Krakauer, “Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function,” Life Sciences, vol. 70, no. 24, pp. 2897–2913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Yue, Q. Li, S. Liu et al., “Mechanism of neuroprotective effect induced by QingKaiLing as an adjuvant drug in rabbits with E. coli bacterial meningitis,” Acta Neurochirurgica, no. 96, pp. 413–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Hua, X. Zhu, P. Li et al., “Refined Qing Kai Ling, traditional Chinese medicinal preparation, reduces ischemic stroke-induced infarct size and neurological deficits and increases expression of endothelial nitric oxide synthase,” Biological and Pharmaceutical Bulletin, vol. 31, no. 4, pp. 633–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Lv, Y. Liu, H. F. Shi, and Q. Dong, “Qingkailing injection attenuates apoptosis and neurologic deficits in a rat model of intracerebral hemorrhage,” Journal of Ethnopharmacology, vol. 125, no. 2, pp. 269–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Hao, X. Kong, and T. Wu, “Assessment of the safety of Qin Kai Ling injection: a systematic review,” Journal of Evidence-Based Medicine, vol. 3, no. 2, pp. 105–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. X. K. Tu, W. Z. Yang, S. S. Shi, C. H. Wang, and C. M. Chen, “Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia,” Neurochemical Research, vol. 34, no. 9, pp. 1626–1634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Jung, K. D. Kang, D. Ji et al., “The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes,” Neurochemistry International, vol. 53, no. 6-8, pp. 325–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Liu, F. Yin, X. X. Zheng, J. Jing, and Y. Hu, “Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway,” Neurochemistry International, vol. 51, no. 6-7, pp. 361–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. G. Yang, Y. H. Shen, Y. Hong et al., “Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology,” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 285–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. P. Rodrigues, S. R. Spellman, S. Solá et al., “Neuroprotection by a bile acid in an acute stroke model in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 4, pp. 463–471, 2002. View at Scopus
  15. Y. Hua, M. R. Kandadi, M. Zhu, J. Ren, and N. Sreejayan, “Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages,” Journal of Cardiovascular Pharmacology, vol. 55, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. J. Zhang, P. Li, Z. Wang et al., “A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury,” Brain Research, vol. 1123, no. 1, pp. 188–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. V. Rao, H. M. Ellerby, and D. E. Bredesen, “Coupling endoplasmic reticulum stress to the cell death program,” Cell Death and Differentiation, vol. 11, no. 4, pp. 372–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Qi, Y. Okuma, T. Hosoi, and Y. Nomura, “Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 1, pp. 388–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Cudna and A. J. Dickson, “Endoplasmic reticulum signaling as a determinant of recombinant protein expression,” Biotechnology and Bioengineering, vol. 81, no. 1, pp. 56–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Nakagawa, H. Zhu, N. Morishima et al., “Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β,” Nature, vol. 403, no. 6765, pp. 98–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Wan, P. Shi, X. Zhang, C. Gu, and S. Fan, “Stronger expression of CHOP and caspase 12 in diabetic spinal cord injury rats,” Neurological research, vol. 31, no. 10, pp. 1049–1055, 2009. View at Scopus
  22. Y. Inokuchi, Y. Nakajima, M. Shimazawa et al., “Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death,” Investigative Ophthalmology and Visual Science, vol. 50, no. 1, pp. 334–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Oida, M. Shimazawa, K. Imaizumi, and H. Hara, “Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil,” Neuroscience, vol. 151, no. 1, pp. 111–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. G. Zou, X. Z. Cao, Y. S. Zhao et al., “The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I,” Endocrinology, vol. 150, no. 1, pp. 277–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. China Pharmacopoeia Committee, Pharmacopoeia of the People's Republic of China, Chemical Industry Press, Beijing, China, 2005.
  26. M. G. De Simoni, C. Storini, M. Barba et al., “Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 2, pp. 232–239, 2003. View at Scopus
  27. S. A. Menzies, J. T. Hoff, A. L. Betz, and R. R. Smith, “Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model,” Neurosurgery, vol. 31, no. 1, pp. 100–107, 1992. View at Scopus
  28. W. M. Clark, N. S. Lessov, M. P. Dixon, and F. Eckenstein, “Monofilament intraluminal middle cerebral artery occlusion in the mouse,” Neurological Research, vol. 19, no. 6, pp. 641–648, 1997. View at Scopus
  29. F. F. Cheng, W. T. Song, X. G. Zhong et al., “Therapeutic window of Qingkailing injection for focal cerebral ischemia/reperfusion injury,” Neural Regeneration Research, vol. 6, no. 21, pp. 1605–1611, 2011.
  30. Y. Numagami and S. T. Ohnishi, “S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia,” Journal of Nutrition, vol. 131, no. 3, pp. 1100S–1105S, 2001. View at Scopus
  31. K. S. Bora and A. Sharma, “Evaluation of antioxidant and cerebroprotective effect of Medicago sativa linn. against ischemia and reperfusion insult,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 792167, 9 pages, 2011. View at Publisher · View at Google Scholar
  32. H. Li, L.-L. Cai, J.-G. Liu et al., “Effect of early intervention with extract of Huannao Yicong Decoction on the pathologic picture of hippocampus and neurocyte apoptosis in APP transgenic mice model of dementia,” Chinese Journal of Integrative Medicine, vol. 17, no. 6, pp. 430–435, 2011. View at Publisher · View at Google Scholar
  33. V. P. Bindokas, J. Jordán, C. C. Lee, and R. J. Miller, “Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine,” Journal of Neuroscience, vol. 16, no. 4, pp. 1324–1336, 1996. View at Scopus
  34. H. Girouard, L. Park, J. Anrather, P. Zhou, and C. Iadecola, “Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 303–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Girouard, G. Wang, E. F. Gallo et al., “NMDA receptor activation increases free radical production through Nitric Oxide and NOX2,” Journal of Neuroscience, vol. 29, no. 8, pp. 2545–2552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Novak and P. S. Rabinovitch, “Improved sensitivity in flow cytometric intracellular ionized calcium measurement using Fluo-3/Fura red fluorescence ratios,” Cytometry, vol. 17, no. 2, pp. 135–141, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Xie, V. I. Khaoustov, C. C. Chung et al., “Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation,” Hepatology, vol. 36, no. 3, pp. 592–601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. T. S. Ma, D. L. Mann, J. H. Lee, and G. J. Gallinghouse, “SR compartment calcium and cell apoptosis in SERCA overexpression,” Cell Calcium, vol. 26, no. 1-2, pp. 25–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Adams, “Ways of dying: multiple pathways to apoptosis,” Genes and Development, vol. 17, no. 20, pp. 2481–2495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Mengesdorf, C. G. Proud, G. Mies, and W. Paschen, “Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain,” Experimental Neurology, vol. 177, no. 2, pp. 538–546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. J. DeGracia, R. Kumar, C. R. Owen, G. S. Krause, and B. C. White, “Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 2, pp. 127–141, 2002. View at Scopus
  42. H. N. David, B. Haelewyn, C. Rouillon et al., “Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia,” FASEB Journal, vol. 22, no. 4, pp. 1275–1286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. E. J. Lee, Y. C. Hung, H. Y. Chen, T. S. Wu, and T. Y. Chen, “Delayed treatment with carboxy-ptio permits a 4-h therapeutic window of opportunity and prevents against ischemia-induced energy depletion following permanent focal cerebral ischemia in mice,” Neurochemical Research, vol. 34, no. 6, pp. 1157–1166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Jia, X. Zhang, Y. S. Hu et al., “Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism,” Thrombosis Research, vol. 123, no. 5, pp. 727–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Wang, J. L. Liu, H. F. Sang, Y. Lu, H. L. Dong, and L. Z. Xiong, “Therapeutic time window of flurbiprofen axetil's neuroprotective effect in a rat model of transient focal cerebral ischemia,” Chinese Medical Journal, vol. 121, no. 24, pp. 2572–2577, 2008. View at Scopus
  46. S. Tajiri, S. Oyadomari, S. Yano et al., “Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP,” Cell Death and Differentiation, vol. 11, no. 4, pp. 403–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Kumar, G. S. Krause, H. Yoshida, K. Mori, and D. J. DeGracia, “Dysfunction of the unfolded protein response during global brain ischemia and reperfusion,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 4, pp. 462–471, 2003. View at Scopus
  48. T. Mengesdorf, C. G. Proud, G. Mies, and W. Paschen, “Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain,” Experimental Neurology, vol. 177, no. 2, pp. 538–546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Z. Wu, Y. H. Li, A. C. J. Huang et al., “Endoplasmic reticulum stress induced by tunicamycin and antagonistic effect of Tiantai No.1 on mesenchymal stem cells,” Chinese Journal of Integrative Medicine, vol. 16, no. 1, pp. 41–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. Adams, “Ways of dying: multiple pathways to apoptosis,” Genes and Development, vol. 17, no. 20, pp. 2481–2495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. D. J. DeGracia and H. L. Montie, “Cerebral ischemia and the unfolded protein response,” Journal of Neurochemistry, vol. 91, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Oyadomari and M. Mori, “Roles of CHOP/GADD153 in endoplasmic reticulum stress,” Cell Death and Differentiation, vol. 11, no. 4, pp. 381–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Paschen, T. Mengesdorf, S. Althausen, and S. Hotop, “Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction,” Journal of Neurochemistry, vol. 76, no. 6, pp. 1916–1924, 2001. View at Publisher · View at Google Scholar · View at Scopus