About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 587902, 15 pages
http://dx.doi.org/10.1155/2012/587902
Research Article

Rokumi-jio-gan-Containing Prescriptions Attenuate Oxidative Stress, Inflammation, and Apoptosis in the Remnant Kidney

1Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
2Chinese Medicine and Health Food Department, Iskra Industry Co., Ltd., Tokyo 103-0027, Japan
3Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
4Organization for Promotion of Regional Collaboration, University of Toyama, Toyama 930-8555, Japan

Received 30 July 2012; Revised 9 October 2012; Accepted 12 October 2012

Academic Editor: Cheorl-Ho Kim

Copyright © 2012 Chan Hum Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. E. Mitch and M. Walser, “Nutritional therapy of the uremic patient,” in The Kidney, B. M. Brenner and F. C. Rector, Eds., pp. 1756–1790, Saunders, Philadelphia, USA, 1986.
  2. K. Kumano, S. Takara, and H. Izumi, “The modification of dietary protein and administration of oral adsorbent AST-120 in chronic renal failure rats,” Japanese Journal of Nephrology, vol. 29, no. 2, pp. 185–194, 1987. View at Scopus
  3. M. Miyazaki, K. Aoyagi, and S. Tojo, “Lactulose therapy for chronic renal failure,” Japanese Journal of Nephrology, vol. 26, no. 8, pp. 1091–1098, 1984. View at Scopus
  4. H. Ha, J. K. Lee, H. Y. Lee et al., “Safety evaluation of Yukmijihwang-tang: assessment of acute and subchronic toxicity in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 672136, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Huang, “Hachimi-jio-gan,” in A Handbook of Traditional Chinese Prescriptions of Dubious and Complicated Cases, pp. 527–538, China Medical and Pharmaceutical Science and Technology Publishing House, Beijing, China, 1997.
  6. T. Yamada, “Hachimi-jio-gan,” in Kinki Youryaku, pp. 1–7, Kyouwa-Kikaku, Tokyo, Japan, 1992.
  7. T. Yokozawa, N. Yamabe, E. J. Cho, T. Nakagawa, and S. Oowada, “A study on the effects to diabetic nephropathy of Hachimi-jio-gan in rats,” Nephron Experimental Nephrology, vol. 97, no. 2, pp. e38–e48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Nakagawa, T. Yokozawa, N. Yamabe et al., “Long-term treatment with Hachimi-jio-gan attenuates kidney damage in spontaneously diabetic WBN/Kob rats,” Journal of Pharmacy and Pharmacology, vol. 57, no. 9, pp. 1205–1212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Yamabe and T. Yokozawa, “Activity of the Chinese prescription Hachimi-jio-gan against renal damage in the Otsuka Long-Evans Tokushima Fatty rat: a model of human type 2 diabetes mellitus,” Journal of Pharmacy and Pharmacology, vol. 58, no. 4, pp. 535–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Yamabe and T. Yokozawa, “Protective effect of Hachimi-jio-gan against the development of pancreatic fibrosis and oxidative damage in Otsuka Long-Evans Tokushima Fatty rats,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 91–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Sakagishi, “Total protein,” in Rinsho Kagaku Bunseki II, M. Saito, M. Kitamura, and M. Niwa, Eds., pp. 115–142, Tokyo Kagaku Dojin, Tokyo, Japan, 1968.
  12. S. F. Ali, C. P. LeBel, and S. C. Bondy, “Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity,” Neurotoxicology, vol. 13, no. 3, pp. 637–648, 1992. View at Scopus
  13. S. Komatsu, “Extraction of nuclear proteins,” Methods in Molecular Biology, vol. 355, pp. 73–77, 2007. View at Scopus
  14. J. Himmelfarb, P. Stenvinkel, T. A. Ikizler, and R. M. Hakim, “The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia,” Kidney International, vol. 62, no. 5, pp. 1524–1538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. N. D. Vaziri, “Oxidative stress in uremia: nature, mechanisms, and potential consequences,” Seminars in Nephrology, vol. 24, no. 5, pp. 469–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. D. Vaziri, Y. Bai, Z. Ni, Y. Quiroz, R. Pandian, and B. Rodriguez-Iturbe, “Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 1, pp. 85–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. J. Kim and N. D. Vaziri, “Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure,” American Journal of Physiology, vol. 298, no. 3, pp. F662–F671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. K. Griendling, D. Sorescu, and M. Ushio-Fukai, “NAD(P)H oxidase: role in cardiovascular biology and disease,” Circulation Research, vol. 86, no. 5, pp. 494–501, 2000. View at Scopus
  20. G. Zalba, G. S. José, M. U. Moreno et al., “Oxidative stress in arterial hypertension: role of NAD(P)H oxidase,” Hypertension, vol. 38, no. 6, pp. 1395–1399, 2001. View at Scopus
  21. B. M. Babior, J. D. Lambeth, and W. Nauseef, “The neutrophil NADPH oxidase,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 342–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Etoh, T. Inoguchi, M. Kakimoto et al., “Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment,” Diabetologia, vol. 46, no. 10, pp. 1428–1437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kawahara, D. Ritsick, G. Cheng, and J. D. Lambeth, “Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation,” Journal of Biological Chemistry, vol. 280, no. 36, pp. 31859–31869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. McKallip, W. Jia, J. Schlomer, J. W. Warren, P. S. Nagarkatti, and M. Nagarkatti, “Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression,” Molecular Pharmacology, vol. 70, no. 3, pp. 897–908, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. I. Tong, Y. Katoh, H. Kusunoki, K. Itoh, T. Tanaka, and M. Yamamoto, “Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 2887–2900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Harvey, R. K. Thimmulappa, A. Singh et al., “Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress,” Free Radical Biology & Medicine, vol. 46, no. 4, pp. 443–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Li and A. N. Kong, “Molecular mechanisms of Nrf2-mediated antioxidant response,” Molecular Carcinogenesis, vol. 48, no. 2, pp. 91–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Anwar, F. Y. L. Li, D. S. Leake, T. Ishii, G. E. Mann, and R. C. M. Siow, “Induction of heme oxygenase 1 by moderately oxidized low-density lipoproteins in human vascular smooth muscle cells: role of mitogen-activated protein kinases and Nrf2,” Free Radical Biology & Medicine, vol. 39, no. 2, pp. 227–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. He, R. C. M. Siow, D. Sugden, L. Gao, X. Cheng, and G. E. Mann, “Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: a role for Nrf2 in vascular protection in diabetes,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 4, pp. 277–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Hojo, Y. Saito, T. Tanimoto et al., “Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism,” Circulation Research, vol. 91, no. 8, pp. 712–718, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Kallunki, T. Deng, M. Hibi, and M. Karin, “c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions,” Cell, vol. 87, no. 5, pp. 929–939, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Gupta, D. Campbell, B. Derijard, and R. J. Davis, “Transcription factor ATF2 regulation by the JNK signal transduction pathway,” Science, vol. 267, no. 5196, pp. 389–393, 1995. View at Scopus
  34. B. A. Hocevar, T. L. Brown, and P. H. Howe, “TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway,” The EMBO Journal, vol. 18, no. 5, pp. 1345–1356, 1999. View at Scopus
  35. P. A. Baeuerle and T. Henkel, “Function and activation of NF-κB in the immune system,” Annual Review of Immunology, vol. 12, pp. 141–179, 1994. View at Scopus
  36. C. Viedt, G. M. Hänsch, R. P. Brandes, W. Kübler, and J. Kreuzer, “The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-κB and AP-1,” The FASEB Journal, vol. 14, no. 15, pp. 2370–2372, 2000. View at Scopus
  37. Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001. View at Scopus
  38. F. Chow, E. Ozols, D. J. Nikolic-Paterson, R. C. Atkins, and G. H. Tesch, “Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury,” Kidney International, vol. 65, no. 1, pp. 116–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kosugi, T. Nakayama, M. Heinig et al., “Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice,” American Journal of Physiology, vol. 297, no. 2, pp. F481–F488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Sachse and G. Wolf, “Angiotensin II-induced reactive oxygen species and the kidney,” Journal of the American Society of Nephrology, vol. 18, no. 9, pp. 2439–2446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Allen, S. Harwood, M. Varagunam, M. J. Raftery, and M. M. Yaqoob, “High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases,” The FASEB Journal, vol. 17, no. 8, pp. 908–910, 2003. View at Scopus
  42. B. P. S. Kang, S. Frencher, V. Reddy, A. Kessler, A. Malhotra, and L. G. Meggs, “High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism,” American Journal of Physiology, vol. 284, no. 3, pp. F455–F466, 2003. View at Scopus
  43. M. L. Brezniceanu, F. Liu, C. C. Wei et al., “Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells,” Diabetes, vol. 57, no. 2, pp. 451–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Crompton, “Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis,” Current Opinion in Cell Biology, vol. 12, no. 4, pp. 414–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Kashihara, H. Sugiyama, and H. Makino, “Implication of apoptosis in progression of renal diseases,” Contributions to Nephrology, vol. 139, pp. 156–172, 2003. View at Scopus
  46. F. A. D. T. G. Wagener, D. Dekker, J. H. Berden, A. Scharstuhl, and J. van der Vlag, “The role of reactive oxygen species in apoptosis of the diabetic kidney,” Apoptosis, vol. 14, no. 12, pp. 1451–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Remuzzi, P. Ruggenenti, and A. Benigni, “Understanding the nature of renal disease progression,” Kidney International, vol. 51, no. 1, pp. 2–15, 1997. View at Scopus
  48. G. Remuzzi and T. Bertani, “Pathophysiology of progressive nephropathies,” New England Journal of Medicine, vol. 339, no. 20, pp. 1448–1456, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. B. M. Brenner, T. W. Meyer, and T. H. Hostetter, “Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease,” New England Journal of Medicine, vol. 307, no. 11, pp. 652–659, 1982. View at Scopus
  50. S. Bro, J. F. Bentzon, E. Falk, C. B. Andersen, K. Olgaard, and L. B. Nielsen, “Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2466–2474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Sakai, K. Kumano, S. Takara et al., “Effect of oral-adsorbent (AST-120) to chronic renal failure (CRF) in rats,” Japanese Journal of Nephrology, vol. 31, no. 4, pp. 359–365, 1989. View at Scopus
  52. M. Porkert, “Standards of value for phenomena of microcosmic dimensions I: orbisiconography,” in The Theoretical Foundations of Chinese Medicine, M. Porkert, Ed., pp. 107–196, The MIT Press, Cambridge, UK, 1978.