About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 589365, 9 pages
http://dx.doi.org/10.1155/2012/589365
Research Article

Inhibition of Connexin 26/43 and Extracellular-Regulated Kinase Protein Plays a Critical Role in Melatonin Facilitated Gap Junctional Intercellular Communication in Hydrogen Peroxide-Treated HaCaT Keratinocyte Cells

1College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 131-701, Republic of Korea
2College of Life Sciences and Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea

Received 26 August 2012; Accepted 26 September 2012

Academic Editor: Y. Ohta

Copyright © 2012 Hyo-Jung Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Lowenstein, “Junctional intercellular communication and the control of growth,” Biochimica et Biophysica Acta, vol. 560, no. 1, pp. 1–65, 1979. View at Scopus
  2. G. Zampighi, “On the structure of isolated junctions between communicating cells,” In Vitro, vol. 16, no. 12, pp. 1018–1028, 1980. View at Scopus
  3. K. M. Lee, J. Y. Kwon, K. W. Lee, and H. J. Lee, “Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway,” Mutation Research, vol. 660, no. 1-2, pp. 51–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Salomon, E. Masgrau, S. Vischer et al., “Topography in mammalian connexins in human skin,” Journal of Investigative Dermatology, vol. 103, no. 2, pp. 240–247, 1994. View at Scopus
  5. J. E. Trosko and R. J. Ruch, “Cell-cell communication in carcinogenesis,” Frontiers in Bioscience, vol. 3, pp. d208–d236, 1998. View at Scopus
  6. P. D. Lampe and A. F. Lau, “The effects of connexin phosphorylation on gap junctional communication,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 7, pp. 1171–1186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. F. Lau, W. E. Kurata, M. Y. Kanemitsu et al., “Regulation of connexin43 function by activated tyrosine protein kinases,” Journal of Bioenergetics and Biomembranes, vol. 28, no. 4, pp. 359–368, 1996. View at Scopus
  8. J. H. Cho, S. D. Cho, H. Hu et al., “The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide,” Carcinogenesis, vol. 23, no. 7, pp. 1163–1169, 2002. View at Scopus
  9. B. L. Upham, M. Gužvić, J. Scott et al., “Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol,” Nutrition and Cancer, vol. 57, no. 1, pp. 38–47, 2007. View at Scopus
  10. R. P. Huang, A. Peng, A. Golard et al., “Hydrogen peroxide promotes transformation of rat liver non-neoplastic epithelial cells through activation of epidermal growth factor receptor,” Molecular Carcinogenesis, vol. 30, no. 4, pp. 209–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Reiter, D. X. Tan, and L. Fuentes-Broto, “Melatonin: a multitasking molecule,” Progress in Brain Research, vol. 181, pp. 127–151, 2010. View at Scopus
  12. J. H. Stehle, A. Saade, O. Rawashdeh et al., “A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases,” Journal of Pineal Research, vol. 51, no. 1, pp. 17–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Bonnefont-Rousselot, F. Collin, D. Jore, and M. Gardès-Albert, “Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro,” Journal of Pineal Research, vol. 50, no. 3, pp. 328–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Galano, D. X. Tan, and R. J. Reiter, “Melatonin as a natural ally against oxidative stress: a physicochemical examination,” Journal of Pineal Research, vol. 51, no. 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. U. I. Wu, F. D. Mai, J. N. Sheu et al., “Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis,” Journal of Pineal Research, vol. 50, no. 2, pp. 159–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Belyaev, T. Herzog, J. Munding et al., “Protective role of endogenous melatonin in the early course of human acute pancreatitis,” Journal of Pineal Research, vol. 50, no. 1, pp. 71–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Raghavendra, G. Kaur, and S. K. Kulkarni, “Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation,” European Neuropsychopharmacology, vol. 10, no. 6, pp. 473–481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. E. Lee, S. J. Kim, J. P. Youn, S. Y. Hwang, C. S. Park, and Y. S. Park, “MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect,” Journal of Pineal Research, vol. 51, no. 3, pp. 345–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Koh, S. J. Jeong, H. J. Lee et al., “Melatonin promotes puromycin-induced apoptosis with activation of caspase-3 and 5′-adenosine monophosphate-activated kinase-alpha in human leukemia HL-60 cells,” Journal of Pineal Research, vol. 50, no. 4, pp. 367–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Jung-Hynes, T. L. Schmit, S. R. Reagan-Shaw, I. A. Siddiqui, H. Mukhtar, and N. Ahmad, “Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model,” Journal of Pineal Research, vol. 50, no. 2, pp. 140–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. I. M. McGonnell, C. R. Green, C. Tickle, and D. L. Becker, “Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face,” Developmental Dynamics, vol. 222, no. 3, pp. 420–438, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Vinken, T. Henkens, E. De Rop, J. Fraczek, T. Vanhaecke, and V. Rogiers, “Biology and pathobiology of gap junctional channels in hepatocytes,” Hepatology, vol. 47, no. 3, pp. 1077–1088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhou, M. T. Mi, J. D. Zhu, and Q. Y. Zhang, “Effects of lovastatin on proliferation and gap junctional intercellular communication of human breast cancer cell MCF-7,” Ai Zheng, vol. 22, no. 3, pp. 257–261, 2003. View at Scopus
  24. G. Gakhar, D. Schrempp, and T. A. Nguyen, “Regulation of gap junctional intercellular communication by TCDD in HMEC and MCF-7 breast cancer cells,” Toxicology and Applied Pharmacology, vol. 235, no. 2, pp. 171–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. H. El-Fouly, J. E. Trosko, and C. C. Chang, “Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication,” Experimental Cell Research, vol. 168, no. 2, pp. 422–430, 1987. View at Scopus
  26. B. L. Upham, K. S. Kang, H. Y. Cho, and J. E. Trosko, “Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells,” Carcinogenesis, vol. 18, no. 1, pp. 37–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. M. R. Wilson, T. W. Close, and J. E. Trosko, “Cell population dynamics (apoptosis, mitosis, and cell-cell communication) during disruption of homeostasis,” Experimental Cell Research, vol. 254, no. 2, pp. 257–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Okamoto and R. Oyasu, “Transformation in vitro of a nontumorigenic rat urothelial cell line by tumor necrosis factor-α,” Laboratory Investigation, vol. 77, no. 2, pp. 139–144, 1997. View at Scopus
  29. R. J. Ruch, S. J. Cheng, and J. E. Klaunig, “Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea,” Carcinogenesis, vol. 10, no. 6, pp. 1003–1008, 1989. View at Scopus
  30. D. Muehlematter, R. Larsson, and P. Cerutti, “Active oxygen induced DNA strand breakage and poly ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells,” Carcinogenesis, vol. 9, no. 2, pp. 239–245, 1988. View at Scopus
  31. R. P. Huang, A. Peng, M. Z. Hossain, Y. Fan, A. Jagdale, and A. L. Boynton, “Tumor promotion by hydrogen peroxide in rat liver epithelial cells,” Carcinogenesis, vol. 20, no. 3, pp. 485–492, 1999. View at Scopus
  32. K. W. Lee, H. J. Lee, K. S. Kang, and C. Y. Lee, “Preventive effects of vitamin C on carcinogenesis,” The Lancet, vol. 359, no. 9301, p. 172, 2002. View at Scopus
  33. S. Sulkowski, M. Sulkowska, and E. Skrzydlewska, “Gap junctional intercellular communication and carcinogenesis,” Polish Journal of Pathology, vol. 50, no. 4, pp. 227–233, 1999. View at Scopus
  34. A. Temme, A. Buchmann, H. D. Gabriel, E. Nelles, M. Schwarz, and K. Willecke, “High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32,” Current Biology, vol. 7, no. 9, pp. 713–716, 1997. View at Scopus
  35. Y. Kamibayashi, Y. Oyamada, M. Mori, and M. Oyamada, “Aberrant expression of gap junction proteins (connexins) is associated with tumor progression during multistage mouse skin carcinogenesis in vivo,” Carcinogenesis, vol. 16, no. 6, pp. 1287–1297, 1995. View at Scopus
  36. J. W. Hwang, J. S. Park, E. H. Jo et al., “Chinese cabbage extracts and sulforaphane can protect H2O2-induced inhibition of gap junctional intercellular communication through the inactivation of ERK1/2 and p38 MAP kinases,” Journal of Agricultural and Food Chemistry, vol. 53, no. 21, pp. 8205–8210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. A. Kuruganti, R. D. Wurster, and P. A. Lucchesi, “Mitogen activated protein kinase activation and oxidant signaling in astrocytoma cells,” Journal of Neuro-Oncology, vol. 56, no. 2, pp. 109–117, 2002. View at Publisher · View at Google Scholar · View at Scopus