About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 603678, 7 pages
http://dx.doi.org/10.1155/2012/603678
Research Article

Antioxidant Activities of Stilbenoids from Rheum emodi Wall

School of Pharmacy, Yantai University, Yantai 264005, China

Received 21 June 2012; Revised 30 August 2012; Accepted 27 September 2012

Academic Editor: DaoFeng Chen

Copyright © 2012 Yuan-yuan Chai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Stief, “The physiology and pharmacology of singlet oxygen,” Medical Hypotheses, vol. 60, no. 4, pp. 567–572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. P. A. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. D. Lele, “Free radicals and antioxidants in human health: current status and future prospects,” Journal of Association of Physicians of India, vol. 52, pp. 794–804, 2004. View at Scopus
  3. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, “Role of reactive oxygen species (ROS) in apoptosis induction,” Apoptosis, vol. 5, no. 5, pp. 415–418, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Wickens, “Ageing and the free radical theory,” Respiration Physiology, vol. 128, no. 3, pp. 379–391, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Cohen, A. R. Kristal, and J. L. Stanford, “Fruit and vegetable intakes and prostate cancer risk,” Journal of the National Cancer Institute, vol. 92, no. 1, pp. 61–68, 2000. View at Scopus
  6. J. Lee, N. Koo, and D. B. Min, “Reactive oxygen species, aging, and antioxidative nutraceuticals,” Comprehensive Reviews in Food Science and Food Safety, vol. 3, no. 1, pp. 21–33, 2004. View at Publisher · View at Google Scholar
  7. K. P. L. Bhat, J. W. Kosmeder, and J. M. Pezzuto, “Biological effects of resveratrol,” Antioxidants and Redox Signaling, vol. 3, no. 6, pp. 1041–1064, 2001. View at Scopus
  8. J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Delmas, B. Jannin, and N. Latruffe, “Resveratrol: preventing properties against vascular alterations and ageing,” Molecular Nutrition and Food Research, vol. 49, no. 5, pp. 377–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. X. W. Xu, G. Q. Qiu, M. Z. Li, et al., “Study on hemolysis, allergic reaction and stimulation of polydatin injection,” Traditional Chinese New Drugs and Clinical Pharmacology, vol. 19, no. 3, pp. 174–178, 2008.
  11. B. P. Nautiyal, V. Prakash, U. C. Maithani, R. S. Chauhan, H. Purohit, and M. C. Nautiyal, “Germinability, productivity and economic viability of Rheum emodi Wall. ex Meissn. cultivated at lower altitude,” Current Science, vol. 84, no. 2, pp. 143–148, 2003. View at Scopus
  12. Z. Q. Xie, “Ecogeographical distribution of the species from Rheum L., (Polygonaceae) in China,” in Proceedings of the 3rd Chinese National Symposim on Biodiversity Protection and Sustained Utilization, pp. 230–238, 1998.
  13. X. Peigen, H. Liyi, and W. Liwei, “Ethnopharmacologic study of Chinese rhubarb,” Journal of Ethnopharmacology, vol. 10, no. 3, pp. 275–293, 1984. View at Scopus
  14. J. L. Li, Z. B. Wang, and J. S. Li, “Studies on hypoglycemic action of Rheum emodi,” Journal of Chinese Medicinal Materials, vol. 20, no. 5, pp. 249–250, 1997. View at Scopus
  15. Z. Q. Liu, A. Q. Zhu, and M. H. Yu, “Effect of Rheum emodi Wall on express level of TNF-α, IL-1β and IL-6 on acute ischemic stroke at high altitude,” Chinese Traditional Patent Medicine, vol. 30, no. 8, pp. 1100–1102, 2008.
  16. B. A. Zargar, M. H. Masoodi, B. Ahmed, and S. A. Ganie, “Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn,” Food Chemistry, vol. 128, no. 3, pp. 585–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Rajkumar, G. Guha, and R. A. Kumar, “Antioxidant and anticancer potentials of Rheum emodi Rhizome extracts,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 697986, 9 pages, 2011. View at Publisher · View at Google Scholar
  18. A. Q. Wang, J. L. Li, and J. S. Li, “Chemical constituents of Rheum emodi,” Chinese Traditional and Herbal Drugs, vol. 41, no. 3, pp. 343–347, 2010. View at Scopus
  19. B. Liu, J. Yang, and S. Wang, “The chemical constituents in rhubarb rhizomes and roots derived from Rheum emodi wall,” West China Journal of Pharmaceutical Sciences, vol. 22, no. 1, pp. 33–35, 2007.
  20. J. G. Lu, S. Wang, X. L. Yan, et al., “Content determination of piceatannol-4′-O-β-D-glucopyranoside in Rheum emodi,” West China Journal of Pharmaceutical Sciences, vol. 23, no. 6, pp. 704–705, 2008.
  21. B. C. Vastano, Y. Chen, N. Zhu, C. T. Ho, Z. Zhou, and R. T. Rosen, “Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum,” Journal of Agricultural and Food Chemistry, vol. 48, no. 2, pp. 253–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. N. R. Ferrigni, J. L. McLaughlin, R. G. Powell, and C. R. Smith, “Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia lagascae,” Journal of Natural Products, vol. 47, no. 2, pp. 347–352, 1984. View at Scopus
  23. L. R. Fukumoto and G. Mazza, “Assessing antioxidant and prooxidant activities of phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3597–3604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Zhou and S. F. Li, “In vitro antioxidant analysis and characterisation of antler velvet extract,” Food Chemistry, vol. 114, no. 4, pp. 1321–1327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Oyaizu, “Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine,” Japanese Journal of Nutrition, vol. 44, no. 6, pp. 307–315, 1986. View at Publisher · View at Google Scholar
  26. H. Y. Fan, Y. Yang, F. H. Fu et al., “Cardioprotective effects of salvianolic acid A on myocardial ischemia-reperfusion injury in vivo and in vitro,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 508938, 9 pages, 2012. View at Publisher · View at Google Scholar
  27. A. L. Zhang, A. P. Lan, D. D. Zheng, et al., “Edaravone protects H9c2 cells against chemical hypoxia-induced injury,” Chinese Journal of Arteriosclerosis, vol. 20, no. 4, pp. 304–308, 2012.
  28. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Halliwell, R. Aeschbach, J. Löliger, and O. I. Aruoma, “The characterization of antioxidants,” Food and Chemical Toxicology, vol. 33, no. 7, pp. 601–617, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. M. H. Carlsen, B. L. Halvorsen, K. Holte et al., “The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide,” Nutrition Journal, vol. 9, no. 1, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. G. Fang, M. Lu, Z. H. Chen, et al., “Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles,” Chemistry—A European Journal, vol. 8, no. 18, pp. 4191–4198, 2002. View at Publisher · View at Google Scholar
  32. N. Cotelle, J. L. Bernier, J. P. Henichart, J. P. Catteau, E. Gaydou, and J. C. Wallet, “Scavenger and antioxidant properties of ten synthetic flavones,” Free Radical Biology and Medicine, vol. 13, no. 3, pp. 211–219, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Watanabe, M. Tahara, and S. Todo, “The novel antioxidant edaravone: from bench to bedside,” Cardiovascular Therapeutics, vol. 26, no. 2, pp. 101–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Yoshida, H. Yanai, Y. Namiki, K. Fukatsu-Sasaki, N. Furutani, and N. Tada, “Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury,” CNS Drug Reviews, vol. 12, no. 1, pp. 9–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. W. Girotti, “Lipid hydroperoxide generation, turnover, and effector action in biological systems,” Journal of Lipid Research, vol. 39, no. 8, pp. 1529–1542, 1998. View at Scopus
  36. E. X. Zhang, L. J. Yu, Y. L. Zhou, and X. Xiao, “Studies on the peroxidation of polyunsaturated fatty acid from lipoprotein induced by iron and the evaluation of the anti-oxidative activity of some natural products,” Acta Biochimica et Biophysica Sinica, vol. 28, no. 2, pp. 221–222, 1996. View at Scopus
  37. Y. Y. Chai, Studies on antioxidant activity and pharmacokinetics of piceatannol and its glycoside [M.S. thesis], Yantai University, Shandong, China, 2012.
  38. S. H. Gao, Studies on determination of polydatin in biological matrice and preclinical pharmacokinetics [M.S. thesis], Second Military Medical University, Shanghai, China, 2005.
  39. J. Slezak, N. Tribulova, J. Pristacova et al., “Hydrogen peroxide changes in ischemic and reperfused heart: cytochemistry and biochemical and X-ray microanalysis,” American Journal of Pathology, vol. 147, no. 3, pp. 772–781, 1995. View at Scopus