About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 607517, 6 pages
http://dx.doi.org/10.1155/2012/607517
Research Article

Mozart K.545 Mimics Mozart K.448 in Reducing Epileptiform Discharges in Epileptic Children

1Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
2Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
3Department of Music, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
4Institute of Applied Physics and Underseas Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
5Institute of Marine Biology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
6Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan

Received 8 May 2012; Accepted 11 November 2012

Academic Editor: R. Govindarajan

Copyright © 2012 Lung-Chang Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Rauscher, G. L. Shaw, and K. N. Ky, “Music and spatial task performance,” Nature, vol. 365, no. 6447, p. 611, 1993. View at Scopus
  2. C. Pacchetti, F. Mancini, R. Aglieri, C. Fundaró, E. Martignoni, and G. Nappi, “Active music therapy in Parkinson's disease: an integrative method for motor and emotional rehabilitation,” Psychosomatic Medicine, vol. 62, no. 3, pp. 386–393, 2000. View at Scopus
  3. N. A. Foster and E. R. Valentine, “The effect of auditory stimulation on autobiographical recall in dementia,” Experimental Aging Research, vol. 27, no. 3, pp. 215–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. M. Hung and C. H. Chen, “Using alternative therapies in treating sleep disturbance,” Hu Li Za Zhi, vol. 58, no. 1, pp. 73–78, 2011. View at Scopus
  5. J. R. Hughes, Y. Daaboul, J. J. Fino, and G. L. Shaw, “The “Mozart effect” on epileptiform activity,” Clinical EEG Electroencephalography, vol. 29, no. 3, pp. 109–119, 1998. View at Scopus
  6. L. C. Lin, W. T. Lee, H. C. Wu et al., “Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics,” Epilepsy Research, vol. 89, no. 2-3, pp. 238–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Arnon, A. Shapsa, L. Forman et al., “Live music is beneficial to preterm infants in the neonatal intensive care unit environment,” Birth, vol. 33, no. 2, pp. 131–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Oelkers-Ax, A. Leins, P. Parzer et al., “Butterbur root extract and music therapy in the prevention of childhood migraine: an explorative study,” European Journal of Pain, vol. 12, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Särkämö, M. Tervaniemi, S. Laitinen et al., “Music listening enhances cognitive recovery and mood after middle cerebral artery stroke,” Brain, vol. 131, no. 3, pp. 866–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Bernatzky, P. Bernatzky, H. P. Hesse, W. Staffen, and G. Ladurner, “Stimulating music increases motor coordination in patients afflicted with Morbus Parkinson,” Neuroscience Letters, vol. 361, no. 1–3, pp. 4–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. C. Lin, W. T. Lee, C. H. Wang et al., “Mozart K.448 acts as a potential add-on therapy in children with refractory epilepsy,” Epilepsy and Behavior, vol. 20, no. 3, pp. 490–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Hughes, “The mozart effect,” Epilepsy and Behavior, vol. 2, no. 5, pp. 396–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhao and A. C. N. Chen, “Both happy and sad melodies modulate tonic human heat pain,” Journal of Pain, vol. 10, no. 9, pp. 953–960, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Peretz and R. J. Zatorre, “Brain organization for music processing,” Annual Review of Psychology, vol. 56, pp. 89–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Bhattacharya, H. Petsche, and E. Pereda, “Interdependencies in the spontaneous EEG while listening to music,” International Journal of Psychophysiology, vol. 42, no. 3, pp. 287–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Blood and R. J. Zatorre, “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11818–11823, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Blood, R. J. Zatorre, P. Bermudez, and A. C. Evans, “Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions,” Nature Neuroscience, vol. 2, no. 4, pp. 382–387, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Brown, M. J. Martinez, and L. M. Parsons, “Passive music listening spontaneously engages limbic and paralimbic systems,” NeuroReport, vol. 15, no. 13, pp. 2033–2037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Janata, B. Tillmann, and J. J. Bharucha, “Listening to polyphonic music recruits domain-general attention and working memory circuits,” Cognitive, Affective and Behavioral Neuroscience, vol. 2, no. 2, pp. 121–140, 2002. View at Scopus
  20. S. Koelsch, “Significance of Broca's area and ventral premotor cortex for music-syntactic processing,” Cortex, vol. 42, no. 4, pp. 518–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Koelsch, E. Kasper, D. Sammler, K. Schulze, T. Gunter, and A. D. Friederici, “Music, language and meaning: brain signatures of semantic processing,” Nature Neuroscience, vol. 7, no. 3, pp. 302–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Menon and D. J. Levitin, “The rewards of music listening: response and physiological connectivity of the mesolimbic system,” NeuroImage, vol. 28, no. 1, pp. 175–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Popescu, A. Otsuka, and A. A. Ioannides, “Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study,” NeuroImage, vol. 21, no. 4, pp. 1622–1638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Molnar-Szakacs and K. Overy, “Music and mirror neurons: from motion to ‘e’motion,” Social Cognitive and Affective Neuroscience, vol. 1, no. 3, pp. 235–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. C. Lin, W. T. Lee, H. C. Wu et al., “The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy,” Epilepsy and Behavior, vol. 21, no. 4, pp. 420–424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Dureau, “The effect of gender on one-day-old infants' behavior and heart rate responses to music decibel level,” Journal of Music Therapy, vol. 42, no. 3, pp. 168–184, 2005. View at Scopus
  27. A. Yasuhara and Y. Sugiyama, “Music therapy for children with Rett syndrome,” Brain and Development, vol. 23, supplement 1, pp. S82–S84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Heal and J. O'Hara, “The music therapy of an anorectic mentally handicapped adult,” British Journal of Medical Psychology, vol. 66, part 1, pp. 33–41, 1993. View at Scopus
  29. A. W. C. Yuen and J. W. Sander, “Can slow breathing exercises improve seizure control in people with refractory epilepsy? A hypothesis,” Epilepsy and Behavior, vol. 18, no. 4, pp. 331–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Mukherjee, M. Tripathi, P. S. Chandra et al., “Cardiovascular autonomic functions in well-controlled and intractable partial epilepsies,” Epilepsy Research, vol. 85, no. 2-3, pp. 261–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Y. Chuang, W. R. Han, P. C. Li, and S. T. Young, “Effects of music therapy on subjective sensations and heart rate variability in treated cancer survivors: a pilot study,” Complementary Therapies in Medicine, vol. 18, no. 5, pp. 224–226, 2010. View at Scopus
  32. K. Okada, A. Kurita, B. Takase et al., “Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia,” International Heart Journal, vol. 50, no. 1, pp. 95–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Sutoo and K. Akiyama, “Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation,” Brain Research, vol. 1016, no. 2, pp. 255–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. R. Haut and R. L. Albin, “Dopamine and epilepsy: hints of complex subcortical roles,” Neurology, vol. 71, no. 11, pp. 784–785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. De Freitas, L. M. V. Aguiar, S. M. M. Vasconcelos, F. C. F. Sousa, G. S. B. Viana, and M. M. F. Fonteles, “Modifications in muscarinic, dopaminergic and serotonergic receptors concentrations in the hippocampus and striatum of epileptic rats,” Life Sciences, vol. 78, no. 3, pp. 253–258, 2005. View at Publisher · View at Google Scholar · View at Scopus