About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 623940, 9 pages
http://dx.doi.org/10.1155/2012/623940
Research Article

Analysis of Flavonoids from Eugenia uniflora Leaves and Its Protective Effect against Murine Sepsis

1Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba, PR, Brazil
2Departamento de Saúde Comunitária, Universidade Federal do Paraná, Rua Padre Camargo, 280, Alto da Glória, 80060-240 Curitiba, PR, Brazil

Received 5 September 2012; Revised 30 October 2012; Accepted 12 November 2012

Academic Editor: Juliano Ferreira

Copyright © 2012 Yanna D. Rattmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D Rotman, “Las especies argentinas del genero Eugenia L. (Myrtaceae),” Boletin de la Sociedad Argentina de Botanica, vol. 30, pp. 63–93, 1995.
  2. A. Kanazawa, A. Patin, and A. E. Greene, “Efficient, highly enantioselective synthesis of selina-1,3,7(11)-trien-8-one, a major component of the essential oil of Eugenia uniflora,” Journal of Natural Products, vol. 63, no. 9, pp. 1292–1294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Alonso, Tratado de Fitomedicina, Isis Ediciones S.R.L, Buenos Aires, Argentina, 1998.
  4. A. C. Adebajo, K. J. Oloke, and A. J. Aladesanmi, “Antimicrobial activities and microbial transformation of volatile oils of Eugenia uniflora,” Fitoterapia, vol. 60, no. 5, pp. 451–455, 1989. View at Scopus
  5. A. E. Consolini and M. G. Sarubbio, “Pharmacological effects of Eugenia uniflora (Myrtaceae) aqueous crude extract on rat's heart,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 57–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. E. S. Schapoval, S. M. Silveira, M. L. Miranda, C. B. Alice, and A. T. Henriques, “Evaluation of some pharmacological activities of Eugenia uniflora L,” Journal of Ethnopharmacology, vol. 44, no. 3, pp. 137–142, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. F. B. Holetz, G. L. Pessini, N. R. Sanches, D. A. G. Cortez, C. V. Nakamura, and B. P. Dias Filho, “Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 7, pp. 1027–1031, 2002. View at Scopus
  8. E. O. Lima, O. F. Gompertz, A. M. Giesbrecht, and M. Q. Paulo, “In vitro antifungal activity of essential oils obtained from officinal plants against dermatophytes,” Mycoses, vol. 36, no. 9-10, pp. 333–336, 1993. View at Scopus
  9. A. C. L. Amorim, C. K. F. Lima, A. M. C. Hovell, A. L. P. Miranda, and C. M. Rezende, “Antinociceptive and hypothermic evaluation of the leaf essential oil and isolated terpenoids from Eugenia uniflora L. (Brazilian Pitanga),” Phytomedicine, vol. 16, no. 10, pp. 923–928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Cacciola, P. Jandera, Z. Hajdú, P. Česla, and L. Mondello, “Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants,” Journal of Chromatography A, vol. 1149, no. 1, pp. 73–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gugliucci, “Antioxidant effects of Ilex paraguariensis: induction of decreased oxidability of human LDL in vivo,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 338–344, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Dartora, L. M. De Souza, A. P. Santana-Filho, M. Iacomini, P. A. J. Gorin, and G. L. Sassaki, “UPLC-PDA-MS evaluation of bioactive compounds from leaves of Ilex paraguariensis with different growth conditions, treatments and ageing,” Food Chemistry, vol. 129, no. 4, pp. 1453–1461, 2011. View at Publisher · View at Google Scholar
  13. M. Sumino, Y. Saito, F. Ikegami, Y. Hirasaki, and T. Namiki, “Extraction efficiency of shosaikoto (Xiaochaihu Tang) and investigation of the major constituents in the residual crude drugs,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 890524, 2012. View at Publisher · View at Google Scholar
  14. A.-R. Im, Y.-H. Kim, M. R. Uddin et al., “Scutellaria baicalensis extracts and flavonoids protect rat l6 cells from antimycin a-induced mitochondrial dysfunction,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 517965, 2012. View at Publisher · View at Google Scholar
  15. M. A. Abd Jalil, A. N. Shuid, and N. Muhammad, “Role of medicinal plants and natural products on osteoporotic fracture healing,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 714512, 2012. View at Publisher · View at Google Scholar
  16. E. Christaki and S. M. Opal, “Immunomodulatory therapy for sepsis: an update,” Expert Review of Anti-Infective Therapy, vol. 9, no. 11, pp. 1013–1033, 2011. View at Publisher · View at Google Scholar
  17. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Thiemermann, “Nitric oxide and septic shock,” General Pharmacology, vol. 29, no. 2, pp. 159–166, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. De Souza, N. Dartora, C. T. Scoparo et al., “Comprehensive analysis of maté (Ilex paraguariensis) compounds: development of chemical strategies for matesaponin analysis by mass spectrometry,” Journal of Chromatography A, vol. 1218, no. 41, pp. 7307–7315, 2011. View at Publisher · View at Google Scholar
  20. D. Rittirsch, M. S. Huber-Lang, M. A. Flierl, and P. A. Ward, “Immunodesign of experimental sepsis by cecal ligation and puncture,” Nature Protocols, vol. 4, no. 1, pp. 31–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. P. P. Bradley, D. A. Priebat, R. D. Christensen, and G. Rothstein, “Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker,” Journal of Investigative Dermatology, vol. 78, no. 3, pp. 206–209, 1982. View at Scopus
  22. D. W. Landry and J. A. Oliver, “Mechanisms of disease: the pathogenesis of vasodilatory shock,” New England Journal of Medicine, vol. 345, no. 8, pp. 588–595, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Pastores, D. P. Katz, and V. Kvetan, “Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome,” American Journal of Gastroenterology, vol. 91, no. 9, pp. 1697–1710, 1996. View at Scopus
  24. A. C. Tinker and A. V. Wallace, “Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases?” Current Topics in Medicinal Chemistry, vol. 6, no. 2, pp. 77–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Ejima, M. D. Layne, I. M. Carvajal et al., “Cyclooxygenase-2-deficient mice are resistant to endotoxin-induced inflammation and death,” The FASEB Journal, vol. 17, no. 10, pp. 1325–1327, 2003. View at Scopus
  26. G. B. Celli, A. B. Pereira-Netto, and T. Beta, “Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages,” Food Research International, vol. 44, no. 8, pp. 2442–2451, 2011. View at Publisher · View at Google Scholar
  27. L. M. de Souza, T. R. Cipriani, C. F. Sant'Ana, M. Iacomini, P. A. J. Gorin, and G. L. Sassaki, “Heart-cutting two-dimensional (size exclusion × reversed phase) liquid chromatography-mass spectrometry analysis of flavonol glycosides from leaves of Maytenus ilicifolia,” Journal of Chromatography A, vol. 1216, no. 1, pp. 99–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Hvattum and D. Ekeberg, “Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry,” Journal of Mass Spectrometry, vol. 38, no. 1, pp. 43–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Cuyckens and M. Claeys, “Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules,” Journal of Mass Spectrometry, vol. 40, no. 3, pp. 364–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. de Souza, T. R. Cipriani, R. V. Serrato et al., “Analysis of flavonol glycoside isomers from leaves of Maytenus ilicifolia by offline and online high performance liquid chromatography-electrospray mass spectrometry,” Journal of Chromatography A, vol. 1207, no. 1-2, pp. 101–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. F. Peng, D. Strack, A. Baumert et al., “Antioxidant flavonoids from leaves of Polygonum hydropiper L,” Phytochemistry, vol. 62, no. 2, pp. 219–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. H. Collins and M. Elzinga, “The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence,” Journal of Biological Chemistry, vol. 250, no. 15, pp. 5915–5920, 1975. View at Scopus
  33. C. T. Scoparo, L. M. de Souza, N. Dartora, G. L. Sassaki, P. A. J. Gorin, and M. Iacomini, “Analysis of Camellia sinensis green and black teas via ultra high performance liquid chromatography assisted by liquid-liquid partition and two-dimensional liquid chromatography (size exclusion×reversed phase),” Journal of Chromatography A, vol. 1222, pp. 29–37, 2012. View at Publisher · View at Google Scholar
  34. Y. C. Chen, S. C. Shen, W. R. Lee, W. C. Hou, L. L. Yang, and T. J. F. Lee, “Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages,” Journal of Cellular Biochemistry, vol. 82, no. 4, pp. 537–548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Hiermann, H. W. Schramm, and S. Laufer, “Anti-inflammatory activity of myricetin-3-O-β-D-glucuronide and related compounds,” Inflammation Research, vol. 47, no. 11, pp. 421–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. S. Lee and E. M. Choi, “Myricetin inhibits IL-1β-induced inflammatory mediators in SW982 human synovial sarcoma cells,” International Immunopharmacology, vol. 10, no. 7, pp. 812–814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Li, C. M. Frenz, Z. Li, and M. Chen, “Virtual and In vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against Xanthine oxidase and Cyclooxygenase-2 for gout treatment,” Chemical Biology and Drug Design. In press.