About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 632838, 8 pages
http://dx.doi.org/10.1155/2012/632838
Research Article

Electrical Potential of Acupuncture Points: Use of a Noncontact Scanning Kelvin Probe

1Osher Center for Integrative Medicine, Brigham and Women’s Hospital, 900 Commonwealth Avenue, Boston, MA 02215, USA
2School of Engineering and Applied Sciences and East Asian Programs, Harvard University, Harvard Yard, Cambridge, MA 02138, USA
3KP Technology Ltd., Wick KW1 5LE, UK
4Department of Physics, University of Oslo, 0316 Oslo, Norway
5Department of Biomedical and Clinical Engineering, Rikshospitalet University Hospital, Oslo University Hospital, 0027 Oslo, Norway
6Departments of Dermatology & Ophthalmology, Research Institute for Regenerative Cures, UC Davis School of Medicine, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
7School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
8Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA 02129, USA
9Division of General Medicine & Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA

Received 20 September 2012; Revised 1 November 2012; Accepted 4 November 2012

Academic Editor: Wolfgang Schwarz

Copyright © 2012 Brian J. Gow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Ahn, A. P. Colbert, B. J. Anderson et al., “Electrical properties of acupuncture points and meridians: a systematic review,” Bioelectromagnetics, vol. 29, no. 4, pp. 245–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Voll, Nosodenanwendung in Diagnostik und therapie 13, ML-Verlage, Uelzen, Germany, 1977.
  3. Y. Nakatani, “Skin electric resistance and Ryodoraku,” Journal of the Autonomic Nervous System, vol. 6, p. 5, 1956.
  4. Y. Nakatani, A Guide for Application of Ryodoraku Autonomous Nerve Regulatory Therapy, 1986.
  5. J. E. H. Niboyet, “Nouvelle constatations sur les proprietes electriques des ponts Chinois 10,” Bulletin de la Société d'Acupuncture, vol. 30, pp. 7–13, 1958.
  6. M. Reichmanis and R. O. Becker, “Physiological effects of stimulation at acupuncture loci: a review,” Comparative Medicine East and West, vol. 6, no. 1, pp. 67–73, 1978. View at Scopus
  7. M. Reichmanis, A. A. Marino, and R. O. Becker, “Electrical correlates of acupuncture points,” IEEE Transactions on Biomedical Engineering, vol. 22, no. 6, pp. 533–535, 1975. View at Scopus
  8. J. Hyvarinen and M. Karlsson, “Low resistance skin points that may coincide with acupuncture loci,” Medical Biology, vol. 55, no. 2, pp. 88–94, 1977. View at Scopus
  9. E. F. Prokhorov, J. González-Hernández, Y. V. Vorobiev, E. Morales-Sánchez, T. E. Prokhorova, and G. Z. Lelo de Larrea, “In vivo electrical characteristics of human skin, including at biological active points,” Medical and Biological Engineering and Computing, vol. 38, no. 5, pp. 507–511, 2000. View at Scopus
  10. M. Reichmanis, A. A. Marino, and R. O. Becker, “Laplace plane analysis of transient impedance between acupuncture Li-4 and Li-12,” IEEE Transactions on Biomedical Engineering, vol. 24, no. 4, pp. 402–405, 1977. View at Scopus
  11. M. Reichmanis, A. A. Marino, and R. O. Becker, “Laplace plane analysis of impedance on the H meridian.,” American Journal of Chinese Medicine, vol. 7, no. 2, pp. 188–193, 1979. View at Scopus
  12. H. M. Johng, J. H. Cho, H. S. Shin et al., “Frequency dependence of impedances at the acupuncture point Quze (PC3),” IEEE Engineering in Medicine and Biology Magazine, vol. 21, no. 2, pp. 33–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Litscher, R. C. Niemtzow, L. Wang, X. Gao, and C. H. Urak, “Electrodermal mapping of an acupuncture point and a non-acupuncture point,” Journal of Alternative and Complementary Medicine, vol. 17, no. 9, pp. 781–782, 2011. View at Publisher · View at Google Scholar
  14. G. Litscher, L. Wang, X. Gao, and I. Gaischek, “Electrodermal mapping: a new technology,” World Journal of Methodology, vol. 1, no. 1, pp. 22–26, 2011.
  15. R. O. Becker and A. A. Marino, “Electromagnetism and Life,” in Modern Bioelectricity, Marcell Dekker, New York, NY, USA, 1988.
  16. M. L. Brown, G. A. Ulett, and J. A. Stern, “Acupuncture loci: techniques for location,” American Journal of Chinese Medicine, vol. 2, no. 1, pp. 67–74, 1974. View at Scopus
  17. C. Ionescu-Tirgoviste and O. Bajenaru, “Electric diagnosis in acupuncture,” American Journal of Acupuncture, vol. 12, no. 3, pp. 229–238, 1984. View at Scopus
  18. S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics, Academic Press, London, UK, 2000.
  19. H. N. McMurray, A. J. Coleman, G. Williams, A. Afseth, and G. M. Scamans, “Scanning kelvin probe studies of filiform corrosion on automotive aluminum alloy AA6016,” Journal of the Electrochemical Society, vol. 154, no. 7, pp. C339–C348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Schnippering, M. Carrara, A. Foelske, R. Kötz, and D. J. Fermín, “Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study,” Physical Chemistry Chemical Physics, vol. 9, no. 6, pp. 725–730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Szymonski, M. Goryl, F. Krok, J. J. Kolodziej, and F. Buatier De Mongeot, “Metal nanostructures assembled at semiconductor surfaces studied with high resolution scanning probes,” Nanotechnology, vol. 18, no. 4, Article ID 044016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Williams, A. Gabriel, A. Cook, and H. N. McMurray, “Dopant effects in polyaniline inhibition of corrosion-driven organic coating cathodic delamination on iron,” Journal of the Electrochemical Society, vol. 153, no. 10, pp. B425–B433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Park, N. V. Nguyen, J. J. Kopanski, J. S. Suehle, and E. M. Vogel, “Comparison of scanning capacitance microscopy and scanning Kelvin probe microscopy in determining two-dimensional doping profiles of Si homostructures,” Journal of Vacuum Science and Technology B, vol. 24, no. 1, pp. 404–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Simpkins, E. T. Yu, U. Chowdhury et al., “Local conductivity and surface photovoltage variations due to magnesium segregation in p-type GaN,” Journal of Applied Physics, vol. 95, no. 11 I, pp. 6225–6231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. S. Jiang, H. R. Moutinho, D. J. Friedman, J. F. Geisz, and M. M. Al-Jassim, “Measurement of built-in electrical potential in III-V solar cells by scanning Kelvin probe microscopy,” Journal of Applied Physics, vol. 93, no. 12, pp. 10035–10040, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. O. A. Semenikhin, L. Jiang, K. Hashimoto, and A. Fujishima, “Kelvin probe force microscopic study of anodically and cathodically doped poly-3-methylthiophene,” Synthetic Metals, vol. 110, no. 2, pp. 115–122, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. G. S. Frankel, M. Stratmann, M. Rohwerder et al., “Potential control under thin aqueous layers using a Kelvin Probe,” Corrosion Science, vol. 49, no. 4, pp. 2021–2036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Taylor, “Developments in the theoretical modelling and experimental measurement of the surface potential of condensed monolayers,” Advances in Colloid and Interface Science, vol. 87, no. 2-3, pp. 183–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. Taylor and G. F. Bayes, “The surface potential of Langmuir monolayers,” Materials Science and Engineering C, vol. 8-9, pp. 65–71, 1999. View at Scopus
  30. A. C. Ahn, B. J. Gow, R. G. Martinsen, M. Zhao, and A. J. Grodzinsky, “Applying the Kelvin probe to biological tissues: theoretical and computational analyses,” Physical Review E, vol. 85, no. 6, Article ID 061901, 2012. View at Publisher · View at Google Scholar
  31. I. D. Baikie, P. J. S. Smith, D. M. Porterfield, and P. J. Estrup, “Multitip scanning bio-Kelvin probe,” Review of Scientific Instruments, vol. 70, no. 3, pp. 1842–1850, 1999. View at Scopus
  32. I. D. Baikie and P. J. Estrup, “Low cost PC based scanning Kelvin probe,” Review of Scientific Instruments, vol. 69, no. 11, pp. 3902–3907, 1998. View at Scopus
  33. I. D. Baikie, S. Mackenzie, P. J. Z. Estrup, and J. A. Meyer, “Noise and the Kelvin method,” Review of Scientific Instruments, vol. 62, no. 5, pp. 1326–1332, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Deadman, M. Al-Khafaji, and K. Baker, A Manual of Acupuncture, Journal of Chinese Medicine Publications, East Sussex, UK, 1998.
  35. M. Jacob, D. Bruegger, M. Rehm, U. Welsch, P. Conzen, and B. F. Becker, “Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability,” Anesthesiology, vol. 104, no. 6, pp. 1223–1231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Z.-X. Zhu, “Research advances in the electrical specificity of meridians and acupuncture points,” American Journal of Acupuncture, vol. 9, no. 3, pp. 203–216, 1981. View at Scopus
  37. C. D. McCaig, A. M. Rajnicek, B. Song, and M. Zhao, “Controlling cell behavior electrically: current views and future potential,” Physiological Reviews, vol. 85, no. 3, pp. 943–978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. O. A. Candia, “Short-circuit current related to active transport of chloride in frog cornea: effects of furosemide and ethacrynic acid,” Biochimica et Biophysica Acta, vol. 298, no. 4, pp. 1011–1014, 1973. View at Scopus
  39. S. D. Klyce, “Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential,” American Journal of Physiology, vol. 228, no. 5, pp. 1446–1452, 1975. View at Scopus
  40. J. J. Vanable, “Integumentary potentials and wound healing,” in Electric Fields in Vertebrate Repair, R. Borgen, K. R. Robinson, J. W. Vanable, and M. E. McGinnis, Eds., pp. 171–224, Liss, New York, NY, USA, 1989.
  41. M. Denda, Y. Ashida, K. Inoue, and N. Kumazawa, “Skin surface electric potential induced by ion-flux through epidermal cell layers,” Biochemical and Biophysical Research Communications, vol. 284, no. 1, pp. 112–117, 2001. View at Publisher · View at Google Scholar · View at Scopus