About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 639469, 10 pages
http://dx.doi.org/10.1155/2012/639469
Research Article

Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

1Pharmacology Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
2Department of Food and Nutrition, Kwangju Women’s University, 165 Sanjeong Dong, Gwangsan-Gu, Gwangju 506-713, Republic of Korea

Received 5 October 2012; Accepted 3 December 2012

Academic Editor: Menaka C. Thounaojam

Copyright © 2012 Hye Joo Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. B. Dokken, “The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids,” Diabetes Spectrum, vol. 21, no. 3, pp. 160–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Pugliese, R. G. Tilton, and J. R. Williamson, “Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease,” Diabetes/Metabolism Reviews, vol. 7, no. 1, pp. 35–59, 1991. View at Publisher · View at Google Scholar
  3. N. Ruderman, J. R. Williamson, and M. Brownlee, “Glucose and diabetic vascular disease,” The FASEB Journal, vol. 6, pp. 2905–2914, 1992.
  4. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Publisher · View at Google Scholar
  5. S. Devaraj, N. Glaser, S. Griffen, J. Wang-Polagruto, E. Miguelino, and I. Jialal, “Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes,” Diabetes, vol. 55, no. 3, pp. 774–779, 2006. View at Scopus
  6. M. Guha, W. Bai, J. Nadler, and R. Natarajan, “Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways,” The Journal of Biological Chemistry, vol. 275, pp. 17728–17739, 2000. View at Publisher · View at Google Scholar
  7. N. Shanmugam, M. A. Reddy, M. Guha, and R. Natarajan, “High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells,” Diabetes, vol. 52, no. 5, pp. 1256–1264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Miao, I. G. Gonzalo, L. Lanting, and R. Natarajan, “In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 18091–18097, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Yun, I. Jialal, and S. Devaraj, “Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin,” Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 450–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rahman and F. Fazal, “Blocking NF-κB: an inflammatory issue,” Proceedings of the American Thoracic Society, vol. 8, pp. 497–503, 2011. View at Publisher · View at Google Scholar
  11. M. S. Hayden and S. Ghosh, “Shared principles in NF-κB signaling,” Cell, vol. 132, no. 3, pp. 344–362, 2008. View at Publisher · View at Google Scholar
  12. L. F. Chen, Y. Mu, and W. C. Greene, “Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB,” The EMBO Journal, vol. 21, pp. 6539–6548, 2002. View at Publisher · View at Google Scholar
  13. R. Kiernan, V. Brès, R. W. Ng, et al., “Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65,” The Journal of Biological Chemistry, vol. 278, pp. 2758–2766, 2003. View at Publisher · View at Google Scholar
  14. I. Rahman, J. Marwick, and P. Kirkham, “Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-κB and pro-inflammatory gene expression,” Biochemical Pharmacology, vol. 15, pp. 1255–1267, 2004.
  15. S. Y. Roth, J. M. Denu, and C. D. Allis, “Histone acetyltransferases,” Annual Review of Biochemistry, vol. 70, pp. 81–120, 2001. View at Publisher · View at Google Scholar
  16. A. Link, F. Balaguer, and A. Goel, “Cancer chemoprevention by dietary polyphenols: promising role for epigenetics,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1771–1792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Lin, Y. Li, and T. O. Tollefsbol, “Gene-environment interactions and epigenetic basis of human diseases,” Current Issues in Molecular Biology, vol. 10, pp. 25–36, 2008.
  18. E. Ho, J. D. Clarke, and R. H. Dashwood, “Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention,” Journal of Nutrition, vol. 139, no. 12, pp. 2393–2396, 2009. View at Publisher · View at Google Scholar
  19. M. Grunstein, “Histone acetylation in chromatin structure and transcription,” Nature, vol. 389, no. 6649, pp. 349–352, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Dandona, A. Chaudhuri, H. Ghanim, and P. Mohanty, “Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease,” American Journal of Cardiology, vol. 99, no. 4, pp. 15–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Igarashi, H. Wakasaki, N. Takahara, et al., “Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways,” The Journal of Clinical Investigation, vol. 103, no. 2, pp. 185–195, 1999. View at Publisher · View at Google Scholar
  22. S. K. Jain, K. Kannan, G. Lim, J. Matthews-Greek, R. McVie, and J. A. Bocchini, “Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes,” Diabetes Care, vol. 26, no. 7, pp. 2139–2143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Higa, T. Hirano, M. Kotani, et al., “Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils,” The Journal of Allergy and Clinical Immunology, vol. 111, no. 6, pp. 1299–1306, 2003. View at Publisher · View at Google Scholar
  24. T. Hirano, S. Higa, J. Arimitsu, et al., “Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils,” International Archives of Allergy and Immunology, vol. 134, pp. 135–140, 2004. View at Publisher · View at Google Scholar
  25. E. Middleton Jr. and G. Drzewiecki, “Flavonoid inhibition of human basophil histamine release stimulated by various agents,” Biochemical Pharmacology, vol. 33, no. 21, pp. 3333–3338, 1984. View at Publisher · View at Google Scholar
  26. N. Mukaida, “Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation,” rnational Journal of Hematology, vol. 72, pp. 391–398, 2000.
  27. T. Fotsis, M. S. Pepper, R. Montesano, et al., “Phytoestrogens and inhibition of angiogenesis,” Baillière's Clinical Endocrinology and Metabolism, vol. 12, no. 4, pp. 649–666, 1998. View at Publisher · View at Google Scholar
  28. A. Hanneken, F. F. Lin, J. Johnson, and P. Maher, “Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death,” Investigative Ophthalmology & Visual Science, vol. 47, pp. 3164–3177, 2006. View at Publisher · View at Google Scholar
  29. P. A. Maher, “A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives,” Free Radical Research, vol. 40, no. 10, pp. 1105–1111, 2006. View at Publisher · View at Google Scholar
  30. R. P. Constantin, J. Constantin, C. L. Pagadigorria, et al., “The actions of fisetin on glucose metabolism in the rat liver,” Cell Biochemistry and Function, vol. 28, no. 2, pp. 149–158, 2010. View at Publisher · View at Google Scholar
  31. B. Sengupta and J. Swenson, “Properties of normal and glycated human hemoglobin in presence and absence of antioxidant,” Biochemical and Biophysical Research Communications, vol. 334, no. 3, pp. 954–959, 2005. View at Publisher · View at Google Scholar
  32. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. K. Jain, J. Rains, J. Croad, B. Larson, and K. Jones, “Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats,” Antioxidants and Redox Signaling, vol. 11, no. 2, pp. 241–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. F. Navaro-Gonzalez and C. Mora-Fernandez, “The role of inflammatory cytokines in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 19, no. 3, pp. 433–442, 2008. View at Publisher · View at Google Scholar
  35. S. Devaraj, A. T. Cheung, I. Jialal et al., “Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications,” Diabetes, vol. 56, no. 11, pp. 2790–2796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. F. Navarro and C. Mora, “Role of inflammation in diabetic complications,” Nephrology Dialysis Transplantation, vol. 20, pp. 2601–2604, 2005. View at Publisher · View at Google Scholar
  37. P. J. Barnes and M. Karin, “Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases,” The New England Journal of Medicine, vol. 336, pp. 1066–1071, 1997. View at Publisher · View at Google Scholar
  38. N. Mukaida, “Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation,” International Journal of Hematology, vol. 72, pp. 391–398, 2000.
  39. Y. Yamamoto, M. J. Yin, K. M. Lin, and R. B. Gaynor, “Sulindac inhibits activation of the NF-κB pathway,” The Journal of Biological Chemistry, vol. 274, pp. 27307–27314, 1999. View at Publisher · View at Google Scholar
  40. H. Schmid, H. Schmid, A. Boucherot, et al., “Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy,” Diabetes, vol. 55, pp. 2993–3003, 2006. View at Publisher · View at Google Scholar
  41. S. Wolfram, “Effects of Green Tea and EGCG on cardiovascular and metabolic health,” Journal of the American College of Nutrition, vol. 26, pp. 373S–388S, 2007.
  42. I. Rahman, S. K. Biswas, and P. A. Kirkham, “Regulation of inflammation and redox signaling by dietary polyphenols,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1439–1452, 2006. View at Publisher · View at Google Scholar
  43. T. Morimoto, Y. Sunagawa, T. Kawamura, et al., “The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats,” The Journal of Clinical Investigation, vol. 118, pp. 868–878, 2008.
  44. Y. Arai, S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, and N. Kinae, “Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration,” Journal of Nutrition, vol. 130, no. 9, pp. 2243–2250, 2000. View at Scopus
  45. Y. Suh, F. Afaq, N. Khan, J. J. Johnson, F. H. Khusro, and H. Mukhtar, “Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells,” Carcinogenesis, vol. 31, no. 8, pp. 1424–1433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. L. Divi and D. R. Doerge, “Inhibition of thyroid peroxidase by dietary flavonoids,” Chemical Research in Toxicology, vol. 9, no. 1, pp. 16–23, 1996. View at Publisher · View at Google Scholar
  47. H. Cheong, S. Y. Ryu, M. H. Oak, S. H. Cheon, G. S. Yoo, and K. M. Kim, “Studies of structure activity relationship of flavonoids for the anti-allergic actions,” Archives of Pharmacal Research, vol. 21, pp. 478–480, 1998. View at Publisher · View at Google Scholar
  48. G. Sriram and S. Subramanian, “Fisetin, a bioflavonoid ameliorates hyperglycemia in STZ-induced experimental diabetes in rats,” International Journal of Pharmaceutical Sciences Review and Research, vol. 6, pp. 68–74, 2011.
  49. G. S. Prasath and S. P. Subramanian, “Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzyme of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 668, no. 3, pp. 492–496, 2011. View at Publisher · View at Google Scholar
  50. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, pp. 813–820, 2001. View at Publisher · View at Google Scholar
  51. T. Nishikawa, D. Edelstein, X. L. Du, et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage,” Nature, vol. 404, pp. 787–790, 2000. View at Publisher · View at Google Scholar
  52. J. M. Yun, A. Chien, I. Jialal, and S. Devaraj, “Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: mechanistic insights,” Journal of Nutritional Biochemistry, vol. 23, no. 7, pp. 699–705, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. N. D. Perkins, “Post-translational modifications regulating the activity and function of the nuclear factor κB pathway,” Oncogene, vol. 25, pp. 6717–6730, 2006. View at Publisher · View at Google Scholar
  54. H. Zhong, R. E. Voll, and S. Ghosh, “Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300,” Molecular Cell, vol. 1, pp. 661–671, 1998. View at Publisher · View at Google Scholar
  55. W. L. Cheung, S. D. Briggs, and C. D. Allis, “Acetylation and chromosomal functions,” Current Opinion in Cell Biology, vol. 12, no. 3, pp. 326–333, 2000. View at Publisher · View at Google Scholar
  56. S. K. Kurdistani and M. Grunstein, “Histone acetylation and deacetylation in yeast,” Nature Reviews Molecular Cell Biology, vol. 4, pp. 276–284, 2003. View at Publisher · View at Google Scholar
  57. F. Yeung, J. E. Hoberg, C. S. Ramsey et al., “Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase,” The EMBO Journal, vol. 23, no. 12, pp. 2369–2380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. P. R. Thompson, D. Wang, L. Wang, et al., “Regulation of the p300 HAT domain via a novel activation loop,” Nature Structural & Molecular Biology, vol. 11, pp. 308–315, 2004. View at Publisher · View at Google Scholar