About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 670536, 14 pages
http://dx.doi.org/10.1155/2012/670536
Research Article

Acupuncture Stimulation Alleviates Corticosterone-Induced Impairments of Spatial Memory and Cholinergic Neurons in Rats

1Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
2Department of Oriental Medicine, Graduate School of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea

Received 24 May 2011; Accepted 8 September 2011

Academic Editor: Rui Chen

Copyright © 2012 Bombi Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Toyama and M. Nishizawa, “The traditional oriental medicine and acupuncture therapy,” Journal of Mississippi State Medical Assiciation, vol. 14, pp. 488–495, 1973.
  2. P. Chou, H. Chu, and J. G. Lin, “Effects of electroacupuncture treatment on impaired cognition and quality of life in Taiwanese stroke patients,” Journal of Alternative and Complementary Medicine, vol. 15, no. 10, pp. 1067–1073, 2009. View at Scopus
  3. H. Kim, H. J. Park, S. M. Han et al., “The effects of acupuncture stimulation at PC6 (Neiguan) on chronic mild stress-induced biochemical and behavioral responses,” Neuroscience Letters, vol. 460, no. 1, pp. 56–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yu, C. Liu, X. Zhang, and J. Han, “Acupuncture improved cognitive impairment caused by multi-infarct dementia in rats,” Physiology and Behavior, vol. 86, no. 4, pp. 434–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Lee, I. Shim, H. J. Lee, Y. Yang, and D. H. Hahm, “Effects of acupuncture on chronic corticosterone-induced depression-like behavior and expression of neuropeptide Y in the rats,” Neuroscience Letters, vol. 453, no. 3, pp. 151–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Skórzewska, A. Bidziński, M. Lehner et al., “The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures,” Pharmacology Biochemistry and Behavior, vol. 85, no. 3, pp. 522–534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. O. T. Wolf, “HPA axis and memory,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 17, no. 2, pp. 287–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Sandi, M. Loscertales, and C. Guaza, “Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze,” European Journal of Neuroscience, vol. 9, no. 4, pp. 637–642, 1997. View at Scopus
  9. N. Marklund, M. Peltonen, T. K. Nilsson, and T. Olsson, “Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke,” Journal of Internal Medicine, vol. 256, no. 1, pp. 15–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Wüppen, D. Oesterle, S. Lewicka, J. Kopitz, and K. Plaschke, “A subchronic application period of glucocorticoids leads to rat cognitive dysfunction whereas physostigmine induces a mild neuroprotection,” Journal of Neural Transmission, vol. 117, pp. 1055–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. R. Bodnoff, A. G. Humphreys, J. C. Lehman, D. M. Diamond, G. M. Rose, and M. J. Meaney, “Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats,” Journal of Neuroscience, vol. 15, no. 1, pp. 61–69, 1995. View at Scopus
  12. H. J. Krugers, B. R. K. Douma, G. Andringa, B. Bohus, J. Korf, and P. G. M. Luiten, “Exposure to chronic psychosocial stress and corticosterone in the rat: effects on spatial discrimination learning and hippocampal protein kinase Cγ immunoreactivity,” Hippocampus, vol. 7, no. 4, pp. 427–436, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Walesiuk, E. Trofimiuk, and J. J. Braszko, “Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats,” Pharmacological Research, vol. 53, no. 2, pp. 123–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. K. Belanoff, K. Gross, A. Yager, and A. F. Schatzberg, “Corticosteroids and cognition,” Journal of Psychiatric Research, vol. 35, no. 3, pp. 127–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Woolley, E. Gould, and B. S. McEwen, “Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons,” Brain Research, vol. 531, no. 1-2, pp. 225–231, 1990. View at Scopus
  16. V. N. Luine, R. L. Spencer, and B. S. McEwen, “Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function,” Brain Research, vol. 616, no. 1-2, pp. 65–70, 1993. View at Scopus
  17. M. J. M. Schaaf, R. M. Sibug, R. Duurland et al., “Corticosterone effects on BDNF mRNA expression in the rat hippocampus during Morris water maze training,” Stress, vol. 3, no. 2, pp. 173–183, 1999. View at Scopus
  18. A. Marcilhac, N. Dakine, N. Bourhim et al., “Effect of chronic administration of Ginkgo biloba extract or Ginkgolide on the hypothalamic-pituitary-adrenal axis in the rat,” Life Sciences, vol. 62, no. 25, pp. 2329–2340, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Trofimiuk, A. Walesiuk, and J. J. Braszko, “St John's wort (Hypericum perforatum) diminishes cognitive impairment caused by the chronic restraint stress in rats,” Pharmacological Research, vol. 51, no. 3, pp. 239–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Zhao, S. S. Yoon, B. H. Lee et al., “Acupuncture normalizes the release of accumbal dopamine during the withdrawal period and after the ethanol challenge in chronic ethanol-treated rats,” Neuroscience Letters, vol. 395, no. 1, pp. 28–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. U. Hecker, A. Steveling, E. Peuker, and J. Kastner, Color Atlas of Acupuncture: Body Points, Ear Points, Trigger Points, Thieme, New York, NY, USA, 2nd edition, 1986.
  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  23. G. Paxinos and G. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York, NY, USA, 1986.
  24. H. MacPherson, R. Hammerschlag, G. Lewith, and R. Schnyer, Acupuncture Research: Strategies for Building an Evidence Base, Churchill Livingstone, Philadelphia, Pa, USA, 2008.
  25. S. Bhatnagar, J. B. Mitchell, K. Betito, P. Boksa, and M. J. Meaney, “Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning,” Physiology and Behavior, vol. 57, no. 4, pp. 633–639, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. N. J. Sandstrom and S. R. Hart, “Isolation stress during the third postnatal week alters radial arm maze performance and corticosterone levels in adulthood,” Behavioural Brain Research, vol. 156, no. 2, pp. 289–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Lee, I. Shim, H. Lee, and D. H. Hahm, “Effect of Bupleurum falcatum on the stress-induced impairment of spatial working memory in rats,” Biological and Pharmaceutical Bulletin, vol. 32, no. 8, pp. 1392–1398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Nacher, K. Pham, V. Gil-Fernandez, and B. S. Mcewen, “Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex,” Neuroscience, vol. 126, no. 2, pp. 503–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. Chen, J. Liang, G. B. Wang, J. S. Han, and C. L. Cui, “Repeated 2 Hz peripheral electrical stimulations suppress morphine-induced CPP and improve spatial memory ability in rats,” Experimental Neurology, vol. 194, no. 2, pp. 550–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Liu, S. P. Chen, Y. H. Gao, F. Y. Meng, S. B. Wang, and J. Y. Wang, “Effects of repeated electroacupuncture on beta-endorphin and adrencorticotropic hormone levels in the hypothalamus and pituitary in rats with chronic pain and ovariectomy,” Chinese Journal of Integrative Medicine, vol. 16, pp. 315–323, 2010.
  31. Z. Jonasson, “Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data,” Neuroscience and Biobehavioral Reviews, vol. 28, no. 8, pp. 811–825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Bisagno, M. Ferrini, H. Ríos, L. M. Zieher, and S. I. Wikinski, “Chronic corticosterone impairs inhibitory avoidance in rats: possible link with atrophy of hippocampal CA3 neurons,” Pharmacology Biochemistry and Behavior, vol. 66, no. 2, pp. 235–240, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. S. C. Spanswick, J. R. Epp, J. R. Keith, and R. J. Sutherland, “Adrenalectomy-induced granule cell degeneration in the hippocampus causes spatial memory deficits that are not reversed by chronic treatment with corticosterone or fluoxetine,” Hippocampus, vol. 17, no. 2, pp. 137–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Nyakas, J. Mulder, K. Felszeghy, J. N. Keijser, R. Mehra, and P. G. M. Luiten, “Chronic excess of corticosterone increases serotonergic fibre degeneration in aged rats,” Journal of Neuroendocrinology, vol. 15, no. 5, pp. 498–507, 2003. View at Scopus
  35. C. D. Conrad, K. J. McLaughlin, J. S. Harman et al., “Chronic glucocorticoids increase hippocampal vulnerability to neurotoxicity under conditions that produce CA3 dendritic retraction but fail to impair spatial recognition memory,” Journal of Neuroscience, vol. 27, no. 31, pp. 8278–8285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Tizabi, V. H. Gilad, and G. M. Gilad, “Effects of chronic stressors or corticosterone treatment on the septohippocampal cholinergic system of the rat,” Neuroscience Letters, vol. 105, no. 1-2, pp. 177–182, 1989. View at Scopus
  37. K. Goto, Y. Chiba, H. Sakai, and M. Misawa, “Glucocorticoids inhibited airway hyperresponsiveness through downregulation of CPI-17 in bronchial smooth muscle,” European Journal of Pharmacology, vol. 591, no. 1–3, pp. 231–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. H. A. Cameron, C. S. Woolley, and E. Gould, “Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus,” Brain Research, vol. 611, no. 2, pp. 342–346, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Ferguson and R. Sapolsky, “Overexpression of mineralocorticoid and transdominant glucocorticoid receptor blocks the impairing effects of glucocorticoids on memory,” Hippocampus, vol. 18, no. 11, pp. 1103–1111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Shapira, I. Tur-Kaspa, L. Bosgraaf et al., “A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases,” Human Molecular Genetics, vol. 9, no. 9, pp. 1273–1281, 2000. View at Scopus
  41. C. Nyakas, J. Mulder, K. Felszeghy, J. N. Keijser, R. Mehra, and P. G. M. Luiten, “Chronic excess of corticosterone increases serotonergic fibre degeneration in aged rats,” Journal of Neuroendocrinology, vol. 15, no. 5, pp. 498–507, 2003. View at Scopus
  42. D. M. Armstrong, C. B. Saper, A. I. Levey, B. H. Wainer, and R. D. Terry, “Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase,” The Journal of Comparative Neurology, vol. 216, pp. 53–68, 1983.
  43. R. M. Sapolsky, L. C. Krey, and B. S. McEwen, “Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging,” Journal of Neuroscience, vol. 5, no. 5, pp. 1222–1227, 1985. View at Scopus
  44. J. R. Cooper, F. E. Bloom, and R. H. Roth, Acetylcholine, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, NY, USA, 2003.
  45. H. Shinjo, A. Ueki, C. Miwa, and Y. Morita, “Effect of entorhinal cortex lesion on hippocampal cholinergic system in rat in operant learning task as studied by in vivo brain microdialysis,” Journal of the Neurological Sciences, vol. 157, no. 1, pp. 13–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Kunugi, H. Hori, N. Adachi, and T. Numakawa, “Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression,” Psychiatry and Clinical Neurosciences, vol. 64, no. 5, pp. 447–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. West, E. C. Griffith, and M. E. Greenberg, “Regulation of transcription factors by neuronal activity,” Nature Reviews Neuroscience, vol. 3, no. 12, pp. 921–931, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Yamada, M. Mizuno, and T. Nabeshima, “Role for brain-derived neurotrophic factor in learning and memory,” Life Sciences, vol. 70, no. 7, pp. 735–744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Yamasaki, T. Shigeno, Y. Furukawa, and S. Furukawa, “Reduction in brain-derived neurotrophic factor protein level in the hippocampal CA1 dendritic field precedes the delayed neuronal damage in the rat brain,” Journal of Neuroscience Research, vol. 53, no. 3, pp. 318–329, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kida, S. A. Josselyn, S. P. De Ortiz et al., “CREB required for the stability of new and reactivated fear memories,” Nature Neuroscience, vol. 5, no. 4, pp. 348–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. J. F. Guzowski and J. L. Mcgaugh, “Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2693–2698, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. W. J. Tyler, M. Alonso, C. R. Bramham, and L. D. Pozzo-Miller, “From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning,” Learning and Memory, vol. 9, no. 5, pp. 224–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Mizuno, K. Yamada, N. Maekawa, K. Saito, M. Seishima, and T. Nabeshima, “CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning,” Behavioural Brain Research, vol. 133, no. 2, pp. 135–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. X. M. Guan, C. Y. Wang, X. C. Liu et al., “The influence of ACH on the metabolism of 5-HT in the brain during acupuncture analgesia,” Acupuncture Research, vol. 13, no. 4, pp. 314–318, 1988. View at Scopus
  55. C. M. Chuang, C. L. Hsieh, T. C. Li, and J. G. Lin, “Acupuncture stimulation at Baihui acupoint reduced cerebral infarct and increased dopamine levels in chronic cerebral hypoperfusion and ischemia-reperfusion injured Sprague-Dawley rats,” American Journal of Chinese Medicine, vol. 35, no. 5, pp. 779–791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. C. H. Yang, B. B. Lee, H. S. Jung, I. Shim, P. U. Roh, and G. T. Golden, “Effect of electroacupuncture on response to immobilization stress,” Pharmacology Biochemistry and Behavior, vol. 72, no. 4, pp. 847–855, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Zhou and J. Jia, “Effect of acupuncture given at the HT 7, ST 36, ST 40 and KI 3 acupoints on various parts of the brains of Alzheimer's disease patients,” Acupuncture and Electro-Therapeutics Research, vol. 33, no. 1-2, pp. 9–17, 2008. View at Scopus
  58. T. Wang, C. Z. Liu, J. C. Yu, W. Jiang, and J. X. Han, “Acupuncture protected cerebral multi-infarction rats from memory impairment by regulating the expression of apoptosis related genes Bcl-2 and Bax in hippocampus,” Physiology and Behavior, vol. 96, no. 1, pp. 155–161, 2009. View at Publisher · View at Google Scholar · View at Scopus