About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 678592, 10 pages
http://dx.doi.org/10.1155/2012/678592
Research Article

Citrus ichangensis Peel Extract Exhibits Anti-Metabolic Disorder Effects by the Inhibition of PPAR and LXR Signaling in High-Fat Diet-Induced C57BL/6 Mouse

1College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
2Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
3School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
4Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, China
5Scientific Experimental Center, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China

Received 7 October 2012; Accepted 29 November 2012

Academic Editor: Weena Jiratchariyakul

Copyright © 2012 Xiaobo Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.H. Organization, “Obesity and overweight,” 2011, http://www.who.int/mediacentre/factsheets/fs311/en/index.html.
  2. C. J. Lavie, R. V. Milani, and H. O. Ventura, “Obesity and cardiovascular disease. Risk factor, paradox, and impact of weight loss,” Journal of the American College of Cardiology, vol. 53, no. 21, pp. 1925–1932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Fernstrom and S. Choi, “The development of tolerance to drugs that suppress food intake,” Pharmacology and Therapeutics, vol. 117, no. 1, pp. 105–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Li, M. Maglione, W. Tu et al., “Meta-analysis: pharmacologic treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 532–546, 2005. View at Scopus
  5. N. Vasudeva, N. Yadav, and S. K. Sharma, “Natural products: a safest approach for obesity,” Chinese Journal of Integrative Medicine, vol. 18, no. 6, pp. 473–480, 2012. View at Publisher · View at Google Scholar
  6. M. Choudhary and K. Grover, “Development of functional food products in relation to obesity,” Functional Foods in Health and Disease, vol. 2, pp. 188–197, 2012.
  7. U. J. Jung, H. J. Kim, J. S. Lee et al., “Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects,” Clinical Nutrition, vol. 22, no. 6, pp. 561–568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gorinstein, A. Caspi, I. Libman et al., “Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans,” Journal of Agricultural and Food Chemistry, vol. 54, no. 5, pp. 1887–1892, 2006. View at Publisher · View at Google Scholar
  9. D. E. Okwu, “Citrus fruits: a rich source of phytochemicals and their roles in human health,” International Journal of Chemical Sciences, vol. 6, pp. 451–471, 2008.
  10. T. Tanaka, M. Tanaka, and T. Kuno, “Cancer chemoprevention by citrus pulp and juices containing high amounts of beta-cryptoxanthin and hesperidin,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 516981, 10 pages, 2012. View at Publisher · View at Google Scholar
  11. T. Yamada, S. Hayasaka, Y. Shibata et al., “Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi medical school cohort study,” Journal of Epidemiology, vol. 21, no. 3, pp. 169–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. G. Preuss, D. DiFerdinando, M. Bagchi, and D. Bagchi, “Citrus aurantium as a thermogenic, weight-reduction replacement for eprhedra: an overview,” Journal of Medicine, vol. 33, no. 1–4, pp. 247–264, 2002. View at Scopus
  13. S. J. Wu, C. C. Ng, W. S. Tzeng, K. C. Ho, and Y. T. Shyu, “Functional antioxidant and tyrosinase inhibitory properties of extracts of Taiwanese pummelo (Citrus grandis Osbeck),” African Journal of Biotechnology, vol. 10, no. 39, pp. 7668–7674, 2011. View at Scopus
  14. H. S. Shin, S. I. Kang, H. C. Ko et al., “Anti-inflammatory effect of the immature peel extract of Jinkyool (Citrus sunki Hort. ex Tanaka),” Food Science and Biotechnology, vol. 20, no. 5, pp. 1235–1241, 2011. View at Publisher · View at Google Scholar
  15. J. A. Manthey and K. Grohmann, “Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses,” Journal of Agricultural and Food Chemistry, vol. 49, no. 7, pp. 3268–3273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Neville, N. A. Pchelintsev, M. J. F. Broderick, T. Gibson, and P. A. Millner, “Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications,” Nanotechnology, vol. 20, no. 5, Article ID 055612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S.P. Committee, Chinese Pharmacopoeia, Chemical Industry Press, Beijing, China, 2005.
  18. H. K. Jung, Y. S. Jeong, C. D. Park, C. H. Park, and J. H. Hong, “Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes,” Journal of Applied Biological Chemistry, vol. 54, no. 2, pp. 169–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Tsujita and T. Takaku, “Lipolysis induced by segment wall extract from Satsuma mandarin orange (Citrus unshu Mark),” Journal of Nutritional Science and Vitaminology, vol. 53, no. 6, pp. 547–551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Bok, S. H. Lee, Y. B. Park et al., “Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3- methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids,” Journal of Nutrition, vol. 129, no. 6, pp. 1182–1185, 1999. View at Scopus
  21. S. I. Kang, H. S. Shin, H. M. Kim et al., “Immature Citrus sunki peel extract exhibits antiobesity effects by beta-oxidation and lipolysis in high-fat diet-induced obese mice,” Biological and Pharmaceutical Bulletin, vol. 35, no. 2, pp. 223–230, 2012. View at Publisher · View at Google Scholar
  22. S. Haaz, K. R. Fontaine, G. Cutter, N. Limdi, S. Perumean-Chaney, and D. B. Allison, “Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update,” Obesity Reviews, vol. 7, no. 1, pp. 79–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Ono, J. Inoue, T. Hashidume, M. Shimizu, and R. Sato, “Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet,” Biochemical and Biophysical Research Communications, vol. 410, no. 3, pp. 677–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nagao, N. Yamano, B. Shirouchi et al., “Effects of citrus auraptene (7-Geranyloxycoumarin) on hepatic lipid metabolism in vitro and in vivo,” Journal of Agricultural and Food Chemistry, vol. 58, no. 16, pp. 9028–9032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. E. Mulvihill and M. W. Huff, “Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: activation of hepatic PGC1α-mediated fatty acid oxidation,” PPAR Research, vol. 2012, Article ID 857142, 9 pages, 2012. View at Publisher · View at Google Scholar
  26. J. Goldwasser, P. Y. Cohen, E. Yang, P. Balaguer, M. L. Yarmush, and Y. Nahmias, “Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARα, PPARγ and LXRα,” PLoS ONE, vol. 5, no. 8, Article ID e12399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. H. Lee, P. Olson, and R. M. Evans, “Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors,” Endocrinology, vol. 144, no. 6, pp. 2201–2207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Pakala, S. W. Rha, P. K. Kuchulakanti, E. Cheneau, R. Baffour, and R. Waksman, “Peroxisome proliferator-activated receptor γ: its role in atherosclerosis and restenosis,” Cardiovascular Radiation Medicine, vol. 5, no. 1, pp. 44–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. K. W. Cho, Y. O. Kim, J. E. Andrade, J. R. Burgess, and Y. C. Kim, “Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats,” European Journal of Nutrition, vol. 50, no. 2, pp. 81–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. S. Kim, H. J. Park, J. H. Woo et al., “Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells,” BMC Complementary and Alternative Medicine, vol. 12, article 31, 2012. View at Publisher · View at Google Scholar
  32. R. W. Li, A. G. Theriault, K. Au et al., “Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters,” Life Sciences, vol. 79, no. 4, pp. 365–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. E. M. Kurowska, J. A. Manthey, A. Casaschi, and A. G. Theriault, “Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin,” Lipids, vol. 39, no. 2, pp. 143–151, 2004. View at Scopus
  34. A. K. Sharma, S. Bharti, S. Ojha et al., “Up-regulation of PPARγ, heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes,” British Journal of Nutrition, vol. 106, no. 11, pp. 1713–1723, 2011. View at Publisher · View at Google Scholar
  35. P. Spiegel-Roy and E. E. Goldschmidt, Biology of Citrus, Cambridge University Press, New York, NY, USA, 1996.
  36. Z. Herman, S. Hasegawa, C. H. Fong, and P. Ou, “Limonoids in Citrus ichangensis,” Journal of Agricultural and Food Chemistry, vol. 37, no. 4, pp. 850–851, 1989. View at Scopus
  37. T. H. Chun, M. Inoue, H. Morisaki et al., “Genetic link between obesity and MMP14-dependent adipogenic collagen turnover,” Diabetes, vol. 59, no. 10, pp. 2484–2494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. McGarry and D. W. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, pp. 395–420, 1980. View at Scopus
  39. J. K. Kim, O. Gavrilova, Y. Chen, M. L. Reitman, and G. I. Shulman, “Mechanism of insulin resistance in A-ZIP/F-1 fatless mice,” The Journal of Biological Chemistry, vol. 275, no. 12, pp. 8456–8460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. M. S. Choi, K. M. Do, Y. B. Park et al., “Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E,” Annals of Nutrition and Metabolism, vol. 45, no. 5, pp. 193–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. U. J. Jung, M. K. Lee, Y. B. Park, M. A. Kang, and M. S. Choi, “Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 7, pp. 1134–1145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. U. J. Jung, M. K. Lee, K. S. Jeong, and M. S. Choi, “The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice,” Journal of Nutrition, vol. 134, no. 10, pp. 2499–2503, 2004. View at Scopus
  43. S. Akiyama, S. I. Katsumata, K. Suzuki, Y. Ishimi, J. Wu, and M. Uehara, “Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats,” Journal of Clinical Biochemistry and Nutrition, vol. 46, no. 1, pp. 87–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Y. Yoon, S. I. Yun, B. Y. Kim et al., “Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells,” European Journal of Pharmacology, vol. 664, no. 1–3, pp. 54–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Zhang, S. Fan, N. Hu et al., “Rhein reduces fat weight in db/db mouse and prevents diet-induced obesity in C57Bl/6 mouse through the inhibition of PPARγ signaling,” PPAR Research, vol. 2012, Article ID 374936, 9 pages, 2012. View at Publisher · View at Google Scholar
  46. Z. Gong, C. Huang, X. Sheng et al., “The role of Tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor γ antagonism,” Endocrinology, vol. 150, no. 1, pp. 104–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Mitro, P. A. Mak, L. Vargas et al., “The nuclear receptor LXR is a glucose sensor,” Nature, vol. 445, no. 7124, pp. 219–223, 2007. View at Publisher · View at Google Scholar · View at Scopus