About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 734987, 15 pages
http://dx.doi.org/10.1155/2012/734987
Research Article

Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells

1School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
2Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan

Received 23 July 2012; Revised 28 November 2012; Accepted 7 December 2012

Academic Editor: Youn Chul Kim

Copyright © 2012 Tai-Long Pan and Pei-Wen Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Hernandez-Gea and S. L. Friedman, “Pathogenesis of liver fibrosis,” Annual Review of Pathology, vol. 6, pp. 425–456, 2011.
  2. S. Gitto, L. Micco, F. Conti, P. Andreone, and M. Bernardi, “Alcohol and viral hepatitis: a mini-review,” Digestive and Liver Disease, vol. 41, no. 1, pp. 67–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Abboud and N. Kaplowitz, “Drug-induced liver injury,” Drug Safety, vol. 30, no. 4, pp. 277–294, 2007. View at Scopus
  4. A. Bosserhoff and C. Hellerbrand, “Obesity and fatty liver are 'grease' for the machinery of hepatic fibrosis,” Digestive Diseases, vol. 29, no. 4, pp. 377–383, 2011.
  5. S. L. Friedman, “Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver,” Physiological Reviews, vol. 88, no. 1, pp. 125–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Li, Z. X. Liao, J. Ping, D. Xu, and H. Wang, “Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies,” Journal of Gastroenterology, vol. 43, no. 6, pp. 419–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. M. Zardi, D. Aldo, A. Giovanni, M. Domenico, P. Francesco, and A. Antonella, “New therapeutic approaches to liver fibrosis: a practicable route?” Current Medicinal Chemistry, vol. 15, no. 16, pp. 1628–1644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. P. Holt, M. Salmon, C. D. Buckley, and D. H. Adams, “Immune interactions in hepatic fibrosis,” Clinics in Liver Disease, vol. 12, no. 4, pp. 861–882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kisseleva and D. A. Brenner, “Hepatic stellate cells and the reversal of fibrosis,” Journal of Gastroenterology and Hepatology, vol. 21, supplement 3, pp. S84–S87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Forner, J. M. Llovet, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 379, no. 9822, pp. 1245–1255, 2012.
  11. A. M. Elsharkawy, F. Oakley, and D. A. Mann, “The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis,” Apoptosis, vol. 10, no. 5, pp. 927–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Han, J. Y. Fan, Y. Horie et al., “Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion,” Pharmacology and Therapeutics, vol. 117, no. 2, pp. 280–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. O. Cheng, “Cardiovascular effects of Danshen,” International Journal of Cardiology, vol. 121, no. 1, pp. 9–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. C. Hung, P. W. Wang, and T. L. Pan, “Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions,” Biochimica et Biophysica Acta, vol. 1804, no. 6, pp. 1310–1321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Wang, F. Xu, J. Chen, et al., “Matrix metalloproteinase-9 induces cardiac fibroblast migration, collagen and cytokine secretion: inhibition by salvianolic acid B from Salvia miltiorrhiza,” Phytomedicine, vol. 19, no. 1, pp. 13–19, 2011.
  16. Y. C. Hsu, Y. L. Lin, Y. T. Chiu, M. S. Shiao, C. Y. Lee, and Y. T. Huang, “Antifibrotic effects of Salvia miltiorrhiza on dimethylnitrosamine- intoxicated rats,” Journal of Biomedical Science, vol. 12, no. 1, pp. 185–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Lv and L. Xu, “Salvianolic acid B inhibits ERK and p38 MAPK signaling in TGF-β1-stimulated human hepatic stellate cell line (LX-2) via distinct pathways,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 960128, 2012. View at Publisher · View at Google Scholar
  18. J. W. Jiao and W. Fang, “Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells,” Oncology Reports, vol. 25, no. 3, pp. 781–788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Pan, Y. C. Hung, P. W. Wang et al., “Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells,” Proteomics, vol. 10, no. 5, pp. 914–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. X. H. Che, E. J. Park, Y. Z. Zhao, W. H. Kim, and D. H. Sohn, “Tanshinone II A induces apoptosis and s phase cell cycle arrest in activated rat hepatic stellate cells,” Basic and Clinical Pharmacology and Toxicology, vol. 106, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Blomme, C. Van Steenkiste, N. Callewaert, and H. Van Vlierberghe, “Alteration of protein glycosylation in liver diseases,” Journal of Hepatology, vol. 50, no. 3, pp. 592–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Schiess, B. Wollscheid, and R. Aebersold, “Targeted proteomic strategy for clinical biomarker discovery,” Molecular Oncology, vol. 3, no. 1, pp. 33–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. R. Mas, R. A. Fisher, K. J. Archer, and D. G. Maluf, “Proteomics and liver fibrosis: identifying markers of fibrogenesis,” Expert Review of Proteomics, vol. 6, no. 4, pp. 421–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Parent and L. Beretta, “Proteomics in the study of liver pathology,” Journal of Hepatology, vol. 43, no. 1, pp. 177–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Pan, P. W. Wang, Y. L. Leu, T. H. Wu, and T. S. Wu, “Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway,” Journal of Ethnopharmacology, vol. 139, no. 3, pp. 829–837, 2012.
  26. T. L. Pan, P. W. Wang, C. C. Chen, J. Y. Fang, and N. Sintupisut, “Functional proteomics reveals hepatotoxicity and the molecular mechanisms of different forms of chromium delivered by skin administration,” Proteomics, vol. 12, no. 3, pp. 477–489, 2012.
  27. T. L. Pan, P. W. Wang, C. C. Huang, C. T. Yeh, T. H. Hu, and J. S. Yu, “Network analysis and proteomic identification of vimentin as a key regulator associated with invasion and metastasis in human hepatocellular carcinoma cells,” Journal of Proteomics, vol. 75, no. 15, pp. 4676–4692, 2012.
  28. P. W. Wang, W. N. Chang, C. H. Lu, D. Chao, C. Schrag, and T. L. Pan, “New insights into the pathological mechanisms of cerebrotendinous xanthomatosis in the Taiwanese using genomic and proteomic tools,” Proteomics, vol. 6, no. 3, pp. 1029–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Stickel and D. Schuppan, “Herbal medicine in the treatment of liver diseases,” Digestive and Liver Disease, vol. 39, no. 4, pp. 293–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. F. Kabore, J. B. Johnston, and S. B. Gibson, “Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic Implications,” Current Cancer Drug Targets, vol. 4, no. 2, pp. 147–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Thiede and T. Rudel, “Proteome analysis of apoptotic cells,” Mass Spectrometry Reviews, vol. 23, no. 5, pp. 333–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. B. Fisher, “Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase a2 activities,” Antioxidants and Redox Signaling, vol. 15, no. 3, pp. 831–844, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Brunati, M. A. Pagano, A. Bindoli, and M. P. Rigobello, “Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes,” Free Radical Research, vol. 44, no. 4, pp. 363–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Tang, H. L. Xue, C. L. Bai, and R. Fu, “Regulation of adhesion molecules expression in TNF-α-stimulated brain microvascular endothelial cells by tanshinone IIA: involvement of NF-κB and ROS generation,” Phytotherapy Research, vol. 25, no. 3, pp. 376–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Mishra, L. C. Murphy, and L. J. Murphy, “The prohibitins: emerging roles in diverse functions,” Journal of Cellular and Molecular Medicine, vol. 10, no. 2, pp. 353–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Sánchez-Quiles, E. Santamaría, V. Segura, L. Sesma, J. Prieto, and F. J. Corrales, “Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications,” Proteomics, vol. 10, no. 8, pp. 1609–1620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. Ande, Z. Xu, Y. Gu, and S. Mishra, “Prohibitin has an important role in adipocyte differentiation,” International Journal of Obesity, vol. 36, no. 9, pp. 1236–1244, 2011. View at Publisher · View at Google Scholar
  38. S. Mishra, S. R. Ande, and B. L. G. Nyomba, “The role of prohibitin in cell signaling,” FEBS Journal, vol. 277, no. 19, pp. 3937–3946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Santarpia, S. M. Lippman, and A. K. El-Naggar, “Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 16, no. 1, pp. 103–119, 2012.
  40. K. Rajalingam, C. Wunder, V. Brinkmann et al., “Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration,” Nature Cell Biology, vol. 7, no. 8, pp. 837–843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Dhillon, Y. Y. Yip, G. J. Grindlay et al., “The C-terminus of Raf-1 acts as a 14-3-3-dependent activation switch,” Cellular Signalling, vol. 21, no. 11, pp. 1645–1651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. G. Young and J. W. Copeland, “Formins in cell signaling,” Biochimica Et Biophysica Acta, no. 2, pp. 183–190, 1803.