About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 753971, 11 pages
http://dx.doi.org/10.1155/2012/753971
Research Article

Effects of Rhizophora mangle on Experimental Colitis Induced by TNBS in Rats

1Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
2Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, 13083-970 Campinas, SP, Brazil
3Departamento de Química Orgânica, Instituto de Química, UNESP, 14800-900 Araraquara, SP, Brazil
4Departamento de Morfologia, Instituto de Biociências, UNESP, 18618-970 Botucatu, SP, Brazil

Received 11 July 2012; Accepted 23 August 2012

Academic Editor: Vassya Bankova

Copyright © 2012 Felipe Meira de Faria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Fournier and C. A. Parkos, “The role of neutrophils during intestinal inflammation,” Mucosal Immunology, vol. 5, no. 4, pp. 354–366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Wirtz, C. Neufert, B. Weigmann, and M. F. Neurath, “Chemically induced mouse models of intestinal inflammation,” Nature Protocols, vol. 2, no. 3, pp. 541–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Danese and C. Fiocchi, “Ulcerative colitis,” The New England Journal of Medicine, vol. 365, pp. 1713–1725, 2011. View at Publisher · View at Google Scholar
  4. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. González, I. Ballester, R. López-Posadas et al., “Effects of flavonoids and other polyphenols on inflammation,” Critical Reviews in Food Science and Nutrition, vol. 51, no. 4, pp. 331–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Abboud, P. W. Hake, T. J. Burroughs et al., “Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis,” European Journal of Pharmacology, vol. 579, no. 1–3, pp. 411–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. S. Perera, D. Ruedas, and B. C. Gómez, “Gastric antiulcer effect of Rhizophora mangle L.,” Journal of Ethnopharmacology, vol. 77, no. 1, pp. 1–3, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. F. M. de-Faria, A. C. A. Almeida, A. Luiz-Ferreira et al., “Antioxidant action of mangrove polyphenols against gastric damage induced by absolute ethanol and ischemia-reperfusion in the rat,” The Scientific World Journal, vol. 2012, Article ID 327071, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Berenguer, L. M. Sánchez, A. Quílez et al., “Protective and antioxidant effects of Rhizophora mangle L. against NSAID-induced gastric ulcers,” Journal of Ethnopharmacology, vol. 103, no. 2, pp. 194–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. de Armas, Y. Sarracent, E. Marrero, O. Fernández, and C. Branford-White, “Efficacy of Rhizophora mangle aqueous bark extract (RMABE) in the treatment of aphthous ulcers: a pilot study,” Current Medical Research and Opinion, vol. 21, no. 11, article 3057, pp. 1711–1715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. M. de-Faria, A. C. A. Almeida, A. Luiz-Ferreira, et al., “Mechanisms of action underlying the gastric antiulcer activity of the Rhizophora mangle L.,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 234–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. G. P. Morris, P. L. Beck, M. S. Herridge, W. T. Depew, M. R. Szewczuk, and J. L. Wallace, “Hapten-induced model of chronic inflammation and ulceration in the rat colon,” Gastroenterology, vol. 96, no. 3, pp. 795–803, 1989. View at Scopus
  13. E. Bailón, M. Comalada, J. Román et al., “UR-1505, a salicylate able to selectively block T-cell activation, shows intestinal anti-inflammatory activity in the chronic phase of the DSS model of rat colitis,” Inflammatory Bowel Diseases, vol. 14, no. 7, pp. 888–897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Vicario, M. Crespí, A. Franch, C. Amat, C. Pelegrí, and M. Moretó, “Induction of colitis in young rats by dextran sulfate sodium,” Digestive Diseases and Sciences, vol. 50, no. 1, pp. 143–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Scopus
  16. T. Yoshikawa, Y. Naito, A. Kishi et al., “Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats,” Gut, vol. 34, no. 6, pp. 732–737, 1993. View at Scopus
  17. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  18. J. E. Krawisz, P. Sharon, and W. F. Stenson, “Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models,” Gastroenterology, vol. 87, no. 6, pp. 1344–1350, 1984. View at Scopus
  19. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  20. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  21. I. Romero-Calvo, B. Ocón, P. Martínez-Moya et al., “Reversible Ponceau staining as a loading control alternative to actin in Western blots,” Analytical Biochemistry, vol. 401, no. 2, pp. 318–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. H. F. Sawaya, D. M. Tomazela, I. B. S. Cunha et al., “Electrospray ionization mass spectrometry fingerprinting of propolis,” The Analyst, vol. 129, no. 8, pp. 739–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Gu, M. A. Kelm, J. F. Hammerstone et al., “Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods,” Journal of Mass Spectrometry, vol. 38, no. 12, pp. 1272–1280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Friedrich, A. Eberhardt, and R. Galensa, “Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry,” European Food Research and Technology, vol. 211, no. 1, pp. 56–64, 2000. View at Scopus
  25. T. Goto, Y. Yoshida, M. Kiso, and H. Nagashima, “Simultaneous analysis of individual catechins and caffeine in green tea,” Journal of Chromatography A, vol. 749, no. 1-2, pp. 295–299, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Dalluge, B. C. Nelson, J. B. Thomas, and L. C. Sander, “Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography,” Journal of Chromatography A, vol. 793, no. 2, pp. 265–274, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. C. M. Rodrigues, D. Rinaldo, L. C. dos Santos et al., “Metabolic fingerprinting using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks of Hancornia speciosa,” Rapid Communications in Mass Spectrometry, vol. 21, no. 12, pp. 1907–1914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. da Silva, S. Sánchez-Fidalgo, E. Talero et al., “Anti-inflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model,” Journal of Ethnopharmacology, vol. 128, no. 2, pp. 467–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Bartsch and J. Nair, “Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair,” Langenbeck's Archives of Surgery, vol. 391, no. 5, pp. 499–510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Chiurchiù and M. MacCarrone, “Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 15, no. 9, pp. 2605–2641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. H. Wang, X. L. Yang, L. Wang et al., “Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 9, pp. 888–898, 2010. View at Scopus
  32. B. G. Spyropoulos, E. P. Misiakos, C. Fotiadis, and C. N. Stoidis, “Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis,” Digestive Diseases and Sciences, vol. 56, no. 2, pp. 285–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Isik, T. Tunali Akbay, A. Yarat et al., “Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats,” Digestive Diseases and Sciences, vol. 56, no. 3, pp. 721–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Camacho-Barquero, I. Villegas, J. M. Sánchez-Calvo et al., “Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis,” International Immunopharmacology, vol. 7, no. 3, pp. 333–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Hyun, P. Andrade-Gordon, M. Steinhoff, and N. Vergnolle, “Protease-activated receptor-2 activation: a major actor in intestinal inflammation,” Gut, vol. 57, no. 9, pp. 1222–1229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. B. K. Reuter, S. Asfaha, A. Buret, K. A. Sharkey, and J. L. Wallace, “Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2,” The Journal of Clinical Investigation, vol. 98, no. 9, pp. 2076–2085, 1996. View at Scopus
  37. A. Andoh, Y. Yagi, M. Shioya, A. Nishida, T. Tsujikawa, and Y. Fujiyama, “Mucosal cytokine network in inflammatory bowel disease,” World Journal of Gastroenterology, vol. 14, no. 33, pp. 5154–5161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. B. Hanauer, “Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities,” Inflammatory Bowel Diseases, vol. 12, supplement 1, pp. S3–S9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Mitsuyama, M. Sata, and S. Rose-John, “Interleukin-6 trans-signaling in inflammatory bowel disease,” Cytokine and Growth Factor Reviews, vol. 17, no. 6, pp. 451–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Mayer, “Evolving paradigms in the pathogenesis of IBD,” Journal of Gastroenterology, vol. 45, no. 1, pp. 9–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. A. Arnett and J. L. Viney, “Gatekeepers of intestinal inflammation,” Inflammation Research, vol. 59, no. 1, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Sabat, “IL-10 family of cytokines,” Cytokine and Growth Factor Reviews, vol. 21, no. 5, pp. 315–324, 2010. View at Publisher · View at Google Scholar · View at Scopus