About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 758097, 10 pages
http://dx.doi.org/10.1155/2012/758097
Research Article

Flavonoid Myricetin Modulates Receptor Activity through Activation of Channels and CaMK-II Pathway

1Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Hong Kong
2Department of Physiology, Medical College Qingdao University, Qingdao, China
3Laboratory Animal Services Centre, The Chinese University of Hong Kong, Hong Kong
4Department of Physiology, School of Basic Medical Sciences, Jilin University, Changchun, China
5School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

Received 20 June 2012; Revised 31 July 2012; Accepted 10 August 2012

Academic Editor: Ke Ren

Copyright © 2012 Xiao Hu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Watanabe, K. Maemura, K. Kanbara, T. Tamayama, and H. Hayasaki, “GABA and GABA receptors in the central nervous system and other organs,” in International Review of Cytology A Survey of Cell Biology. Volume 213, W. J. Kwang, Ed., pp. 1–47, Academic Press, New York, NY, USA, 2002.
  2. C. Gottesmann, “GABA mechanisms and sleep,” Neuroscience, vol. 111, no. 2, pp. 231–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Möhler, “GABAA receptor diversity and pharmacology,” Cell and Tissue Research, vol. 326, no. 2, pp. 505–516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Szabadi, “Drugs for sleep disorders: mechanisms and therapeutic prospects,” British Journal of Clinical Pharmacology, vol. 61, no. 6, pp. 761–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. E. Jones, “From waking to sleeping: neuronal and chemical substrates,” Trends in Pharmacological Sciences, vol. 26, no. 11, pp. 578–586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. W. McCarley, “Neurobiology of REM and NREM sleep,” Sleep Medicine, vol. 8, no. 4, pp. 302–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Richey and A. D. Krystal, “Pharmacological advances in the treatment of insomnia,” Current Pharmaceutical Design, vol. 17, no. 15, pp. 1471–1475, 2011. View at Publisher · View at Google Scholar
  8. S. Saddichha, “Diagnosis and treatment of chronic insomnia,” Annals of Indian Academy of Neurology, vol. 13, no. 2, pp. 94–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Seibt, S. J. Aton, S. K. Jha, T. Coleman, M. C. Dumoulin, and M. G. Frank, “The non-benzodiazepine hypnotic zolpidem impairs sleep-dependent cortical plasticity,” Sleep, vol. 31, no. 10, pp. 1381–1391, 2008. View at Scopus
  10. G. Hajak, W. E. Müller, H. U. Wittchen, D. Pittrow, and W. Kirch, “Abuse and dependence potential for the non-benzodiazepine hypnotics zolpidem and zopiclone: a review of case reports and epidemiological data,” Addiction, vol. 98, no. 10, pp. 1371–1378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. B. Harborne and C. A. Williams, “Advances in flavonoid research since 1992,” Phytochemistry, vol. 55, no. 6, pp. 481–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Wang, M. S. Y. Huen, S. Y. Tsang, and H. Xue, “Neuroactive flavonoids interacting with GABAA receptor complex,” Current Drug Targets, vol. 4, no. 5, pp. 575–585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Griebel, G. Perrault, S. Tan, H. Schoemaker, and D. J. Sanger, “Pharmacological studies on synthetic flavonoids: comparison with diazepam,” Neuropharmacology, vol. 38, no. 7, pp. 965–977, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. K. C. Ong and H. E. Khoo, “Biological effects of myricetin,” General Pharmacology, vol. 29, no. 2, pp. 121–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. I. M. Liu, T. F. Tzeng, S. S. Liou, and T. W. Lan, “Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus,” Planta Medica, vol. 73, no. 10, pp. 1054–1060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Nirmala and M. Ramanathan, “Effect of myricetin on 1,2 dimethylhydrazine induced rat colon carcinogenesis,” Journal of Experimental Therapeutics and Oncology, vol. 9, no. 2, pp. 101–108, 2011. View at Scopus
  17. Z. G. Ma, J. Wang, H. Jiang, T. W. Liu, and J. X. Xie, “Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats,” NeuroReport, vol. 18, no. 11, pp. 1181–1185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Schwarz, P. Kisselev, W. H. Schunck, and I. Roots, “Inhibition of 17β-estradiol activation by CYP1A1: genotype- and regioselective inhibition by St. John's Wort and several natural polyphenols,” Biochimica et Biophysica Acta, vol. 1814, no. 1, pp. 168–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. F. C. Meotti, A. P. Luiz, M. G. Pizzolatti, C. A. L. Kassuya, J. B. Calixto, and A. R. S. Santos, “Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 2, pp. 789–796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. C. Meotti, R. Fachinetto, L. C. Maffi et al., “Antinociceptive action of myricitrin: Involvement of the K+ and Ca2+ channels,” European Journal of Pharmacology, vol. 567, no. 3, pp. 198–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Hagenacker, I. Hillebrand, A. Wissmann, D. Büsselberg, and M. Schäfers, “Anti-allodynic effect of the flavonoid myricetin in a rat model of neuropathic pain: involvement of p38 and protein kinase C mediated modulation of Ca2+ channels,” European Journal of Pain, vol. 14, no. 10, pp. 992–998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Mignot, S. Taheri, and S. Nishino, “Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders,” Nature Neuroscience, vol. 5, pp. 1071–1075, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Szymusiak, I. Gvilia, and D. McGinty, “Hypothalamic control of sleep,” Sleep Medicine, vol. 8, no. 4, pp. 291–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. B. Saper, T. E. Scammell, and J. Lu, “Hypothalamic regulation of sleep and circadian rhythms,” Nature, vol. 437, no. 7063, pp. 1257–1263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Herman, J. G. Tasker, D. R. Ziegler, and W. E. Cullinan, “Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections,” Pharmacology Biochemistry and Behavior, vol. 71, no. 3, pp. 457–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Winsky-Sommerer, A. Yamanaka, S. Diano et al., “Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response,” Journal of Neuroscience, vol. 24, no. 50, pp. 11439–11448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Winsky-Sommerer, B. Boutrel, and L. de Lecea, “Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry,” Molecular Neurobiology, vol. 32, no. 3, pp. 285–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. N. Vgontzas and G. P. Chrousos, “Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders,” Endocrinology and Metabolism Clinics of North America, vol. 31, no. 1, pp. 15–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. R. S. Vijayan, D. Bhattacharyya, and N. Ghoshal, “Deciphering the binding mode of Zolpidem to GABA(A) alpha (1) receptor—insights from molecular dynamics simulation,” Journal of Molecular Modeling, vol. 18, no. 4, pp. 1345–1354, 2012. View at Publisher · View at Google Scholar
  30. L. Chen, C. S. Chan, and W. H. Yung, “Electrophysiological and behavioral effects of zolpidem in rat globus pallidus,” Experimental Neurology, vol. 186, no. 2, pp. 212–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. J. Mcdonald and S. J. Moss, “Conserved phosphorylation of the intracellular domains of GABA(A) receptor β2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase,” Neuropharmacology, vol. 36, no. 10, pp. 1377–1385, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. K. C. Marsden, A. Shemesh, K. U. Bayer, and R. C. Carroll, “Selective translocation of Ca2+/calmodulin protein kinase IIα (CaMKIIα) to inhibitory synapses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20559–20564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Houston, Q. He, and T. G. Smart, “CaMKII phosphorylation of the GABAA receptor: receptor subtype- and synapse-specific modulation,” Journal of Physiology, vol. 587, no. 10, pp. 2115–2125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. M. Houston, H. H. C. Lee, A. M. Hosie, S. J. Moss, and T. G. Smart, “Identification of the sites for CaMK-II-dependent phosphorylation of GABAA receptors,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17855–17865, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Tokumitsu, T. Chijiwa, M. Hagiwara, A. Mizutani, M. Terasawa, and H. Hidaka, “KN-62, 1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperaz ine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II,” Journal of Biological Chemistry, vol. 265, no. 8, pp. 4315–4320, 1990. View at Scopus
  36. M. Kano, M. Kano, K. Fukunaga, and A. Konnerth, “Ca2+-induced rebound potentiation of γ-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 13351–13356, 1996. View at Scopus
  37. Y. Mizoguchi, H. Ishibashi, and J. Nabekura, “The action of BDNF on GABAA currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons,” Journal of Physiology, vol. 548, no. 3, pp. 703–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Fusi, S. Saponara, M. Frosini, B. Gorelli, and G. Sgaragli, “L-type Ca2+ channels activation and contraction elicited by myricetin on vascular smooth muscles,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 368, no. 6, pp. 470–478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Fusi, G. Sgaragli, and S. Saponara, “Mechanism of myricetin stimulation of vascular L-type Ca2+ current,” Journal of Pharmacology and Experimental Therapeutics, vol. 313, no. 2, pp. 790–797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. A. Skelding and J. A. P. Rostas, “Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment,” Neurochemical Research, vol. 34, no. 10, pp. 1792–1804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Gandolfo, R. Scherschlicht, and C. Gottesmann, “Benzodiazepines promote the intermediate stage at the expense of paradoxical sleep in the rat,” Pharmacology Biochemistry and Behavior, vol. 49, no. 4, pp. 921–927, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Tobler, C. Kopp, T. Deboer, and U. Rudolph, “Diazepam-induced changes in sleep: role of the α1 GABAA receptor subtype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6464–6469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Halász, M. Terzano, L. Parrino, and R. Bódizs, “The nature of arousal in sleep,” Journal of Sleep Research, vol. 13, no. 1, pp. 1–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. P. Anderson, T. Mochizuki, J. Xie et al., “Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 5, pp. 1743–1748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Crunelli, D. W. Cope, and S. W. Hughes, “Thalamic T-type Ca2+ channels and NREM sleep,” Cell Calcium, vol. 40, no. 2, pp. 175–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Wafford and B. Ebert, “Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time,” Nature Reviews Drug Discovery, vol. 7, no. 6, pp. 530–540, 2008. View at Publisher · View at Google Scholar · View at Scopus