About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 792820, 9 pages
http://dx.doi.org/10.1155/2012/792820
Research Article

Electroacupuncture at PC6 (Neiguan) Improves Extracellular Signal-Regulated Kinase Signaling Pathways Through the Regulation of Neuroendocrine Cytokines in Myocardial Hypertrophic Rats

1Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430061, China
2Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China

Received 29 April 2011; Accepted 28 June 2011

Academic Editor: Rui Chen

Copyright © 2012 Jia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Izzo and A. H. Gradman, “Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure,” Medical Clinics of North America, vol. 88, no. 5, pp. 1257–1271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Frey and E. N. Olson, “Cardiac hypertrophy: the good, the bad, and the ugly,” Annual Review of Physiology, vol. 65, pp. 45–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. J. Schultz, S. A. Witt, B. J. Glascock et al., “TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 787–796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Borges, J. A. Silva Jr., M. A. Gomes et al., “Tonin in rat heart with experimental hypertrophy,” American Journal of Physiology, vol. 284, no. 6, pp. H2263–H2268, 2003. View at Scopus
  5. G. A. Mansoor and W. B. White, “Is white-coat hypertension innocent or detrimental?” Blood Pressure Monitoring, vol. 4, no. 5, pp. 241–248, 1999. View at Scopus
  6. M. Clozel, C. Qiu, C. S. Qiu, P. Hess, and J. P. Clozel, “Short-term endothelin receptor blockade with tezosentan has both immediate and long-term beneficial effects in rats with myocardial infarction,” Journal of the American College of Cardiology, vol. 39, no. 1, pp. 142–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Molkentin and G. W. Dorn 2nd, “Cytoplasmic signaling pathways that regulate cardiac hypertrophy,” Annual Review of Physiology, vol. 63, pp. 391–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Thorburn, J. A. Frost, and A. Thorburn, “Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy,” Journal of Cell Biology, vol. 126, no. 6, pp. 1565–1572, 1994. View at Scopus
  9. C. Widmann, S. Gibson, M. B. Jarpe, and G. L. Johnson, “Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human,” Physiological Reviews, vol. 79, no. 1, pp. 143–180, 1999. View at Scopus
  10. L. Wang and C. G. Proud, “Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes,” Circulation Research, vol. 91, no. 9, pp. 821–829, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Kamio, S. Akifusa, N. Yamaguchi, and Y. Yamashita, “Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway,” Molecular and Cellular Endocrinology, vol. 292, no. 1-2, pp. 20–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Torii, K. Nakayama, T. Yamamoto, and E. Nishida, “Regulatory mechanisms and function of ERK MAP kinases,” Journal of Biochemistry, vol. 136, no. 5, pp. 557–561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. F. W. Hoffmann, A. S. Hashimoto, B. C. Lee, A. H. Rose, et al., “Function of myocardial contraction and relaxation in essential hypertension in dynamics of acupuncture therapy,” The American Journal of Chinese Medicine, vol. 17, no. 3-4, pp. 111–117, 1989.
  14. J. Meng, “The effects of acupuncture in treatment of coronary heart diseases,” Journal of Traditional Chinese Medicine, vol. 24, no. 1, pp. 16–19, 2004. View at Scopus
  15. W. Yin, P. Zhang, J. H. Huang et al., “Stimulation of κ-opioid receptor reduces isoprenaline-induced cardiac hypertrophy and fibrosis,” European Journal of Pharmacology, vol. 607, no. 1–3, pp. 135–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. C. Wollert and H. Drexler, “Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis,” Heart Failure Reviews, vol. 7, no. 4, pp. 317–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. X. R. Zhang, Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials, World Health Organization, Geneva, Switzerland, 2003.
  18. H. R. Middlekauff, “Acupuncture in the treatment of heart failure,” Cardiology in Review, vol. 12, no. 3, pp. 171–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. H. Kim, K. S. Kim, H. J. Lee, J. C. Shim, and S. W. Yoon, “The efficacy of several neuromuscular monitoring modes at the P6 acupuncture point in preventing postoperative nausea and vomiting,” Anesthesia and Analgesia, vol. 112, no. 4, pp. 819–823, 2011.
  20. T. Peng, X. T. Li, S. F. Zhou, Y. Xiong, Y. Kang, and H. D. Cheng, “Transcutaneous electrical nerve stimulation on acupoints relieves labor pain: a non-randomized controlled study,” Chinese Journal of Integrative Medicine, vol. 16, no. 3, pp. 234–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. X. Liang, R. Chen, A. Nakagawa et al., “Low-frequency electroacupuncture improves insulin sensitivity in obese diabetic mice through activation of SIRT1/PGC-1α in skeletal muscle,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 735297, p. 9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Wang, Acupuncture and Moxibustion Science, Higher Education Press, Beijing, China, 2008.
  23. E. Kim, J.-H. Cho, W. S. Jung, S. Lee, and S. C. Pak, “Effect of acupuncture on heart rate variability in primary dysmenorrheic women,” The American Journal of Chinese Medicine, vol. 39, no. 2, pp. 243–249, 2011. View at Publisher · View at Google Scholar
  24. Z. Y. Li, C. T. Wang, A. F. Mak, and D. H. Chow, “Effects of acupuncture on heart rate variability in normal subjects under fatigue and non-fatigue state,” European Journal of Applied Physiology, vol. 94, no. 5-6, pp. 633–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Nayak, R. Wenstone, A. Jones, J. Nolan, A. Strong, and J. Carson, “Surface electrostimulation of acupuncture points for sedation of critically ill patients in the intensive care unit—a pilot study,” Acupuncture in Medicine, vol. 26, no. 1, pp. 1–7, 2008. View at Scopus
  26. C. C. Hsu, C. S. Weng, T. S. Liu, Y. S. Tsai, and Y. H. Chang, “Effects of electrical acupuncture on acupoint BL15 evaluated in terms of heart rate variability, pulse rate variability and skin conductance response,” The American Journal of Chinese Medicine, vol. 34, no. 1, pp. 23–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Zhou, L. W. Fu, S. C. Tjen-A-Looi, P. Li, and J. C. Longhurst, “Afferent mechanisms underlying stimulation modality-related modulation of acupuncture-related cardiovascular responses,” Journal of Applied Physiology, vol. 98, no. 3, pp. 872–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Y. Zhou, S. C. Tjen-A-Looi, and J. C. Longhurst, “Brain stem mechanisms underlying acupuncture modality-related modulation of cardiovascular responses in rats,” Journal of Applied Physiology, vol. 99, no. 3, pp. 851–860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kohútová, S. Pogranová, M. Jusko, P. Švec, and T. Stankovičová, “Electrical activity of the heart in the rats with experimental hypertension,” Physiological Research, vol. 55, 2006.
  30. E. Kráľová, L. Korenová, R. Kohútová, et al., “Is increased susceptibility to ventricular arrhythmias in hypertensive rats?” Physiological Research, vol. 56, 2007.
  31. E. Králová, T. Mokrán, J. Murín, and T. Stankovicová, “Electrocardiography in two models of isoproterenol-induced left ventricular remodeling,” Physiological Research, vol. 57, pp. 83–89, 2008. View at Scopus
  32. M. A. Leesar, M. Stoddard, M. Ahmed, J. Broadbent, and R. Bolli, “Preconditioning of human myocardium with adenosine during coronary angioplasty,” Circulation, vol. 95, no. 11, pp. 2500–2507, 1997. View at Scopus
  33. C. Ruwhof and A. van der Laarse, “Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways,” Cardiovascular Research, vol. 47, no. 1, pp. 23–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. J. C. Borges, J. A. Silva Jr., M. A. Gomes et al., “Tonin in rat heart with experimental hypertrophy,” American Journal of Physiology, vol. 284, no. 6, pp. H2263–H2268, 2003. View at Scopus
  35. E. Golomb, Z. A. Abassi, G. Cuda et al., “Angiotensin II maintains, but does not mediate, isoproterenol-induced cardiac hypertrophy in rats,” American Journal of Physiology, vol. 267, no. 4, part 2, pp. H1496–H1506, 1994. View at Scopus
  36. V. Pelouch, F. Kolár, B. Ost'ádal, M. Milerová, R. Cihák, and J. Widimský, “Regression of chronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril,” Cardiovascular Drugs and Therapy, vol. 11, no. 2, pp. 177–185, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. H. W. You, X. Chen, H. J. You, Y. Q. Zhang, Y. Cai, and G. Z. Liu, “Role of endothelin-1 and its receptors on hypertrophy or proliferation of cultured cardial cells,” Zhongguo Yi Xue Ke Xue Yuan Xue Bao, vol. 28, no. 4, pp. 520–523, 2006. View at Scopus
  38. G. X. Zhang, K. Ohmori, Y. Nagai et al., “Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 4, pp. 804–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. H. Sugden and A. Clerk, “Activation of the small GTP-binding protein Ras in the heart by hypertrophic agonists,” Trends in Cardiovascular Medicine, vol. 10, no. 1, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Peyssonnaux and A. Eychène, “The Raf/ERK pathway: new concepts of activation,” Biology of the Cell/under the Auspices of the European Cell Biology Organization, vol. 93, no. 1-2, pp. 1–8, 2001.
  41. J. W. Tullai, M. E. Schaffer, S. Mullenbrock, S. Kasif, and G. M. Cooper, “Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways,” Journal of Biological Chemistry, vol. 279, no. 19, pp. 20167–20177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Blenis, “Signal transduction via the MAP kinases: proceed at your own RSK,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 5889–5892, 1993. View at Scopus
  43. G. Sabio, S. Reuver, C. Feijoo, et al., “Stress and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2,” Biology of the Cell/under the Auspices of the European Cell Biology Organization, vol. 380, no. 1, pp. 19–30, 2004.
  44. M. A. Bogoyevitch, P. E. Glennon, M. B. Andersson et al., “Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy,” Journal of Biological Chemistry, vol. 269, no. 2, pp. 1110–1119, 1994. View at Scopus
  45. J. Sadoshima, Z. Qiu, J. P. Morgan, and S. Izumo, “Angiotensin II and other hypertrophic stimuli mediated by G protein- coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes,” Circulation Research, vol. 76, no. 1, pp. 1–15, 1995. View at Scopus