About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 818451, 12 pages
http://dx.doi.org/10.1155/2012/818451
Research Article

Inhibition of Activity of GABA Transporter GAT1 by -Opioid Receptor

1Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt, Germany
2Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology and Max-Planck Guest Laboratory, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
3Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
4Shanghai Research Center for Acupuncture and Meridians, 199 Guoshoujing Road, Shanghai 201203, China
5NingXia Key Lab of Cerebrocranial Disease, Ningxia Medical University, 1160 Shengli Street, Ningxia Hui Autonomous Region, Yinchuan 750004, China
6Central Institute of Mental Health, BCCN Heidelberg-Mannheim, J5, 68159 Mannheim, Germany
7Institute for Biophysics, Goethe-University Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany

Received 11 September 2012; Revised 4 November 2012; Accepted 4 November 2012

Academic Editor: Ying Xia

Copyright © 2012 Lu Pu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Rothstein, L. Martin, A. I. Levey et al., “Localization of neuronal and glial glutamate transporters,” Neuron, vol. 13, no. 3, pp. 713–725, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. He, W. G. Janssen, J. D. Rothstein, and J. H. Morrison, “Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus,” The Journal of Comparative Neurology, vol. 418, pp. 255–269, 2000.
  3. J. Levenson, E. Weeber, J. C. Selcher, L. S. Kategayal, D. J. Sweatt, and A. Eskin, “Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake,” Nature Neuroscience, vol. 5, no. 2, pp. 155–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Borden and M. J. Caplan, “GABA transporter heterogeneity: pharmacology and cellular localization,” Neurochemistry International, vol. 29, no. 4, pp. 335–356, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. T. P. Malan, H. P. Mata, and F. Porreca, “Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain,” Anesthesiology, vol. 96, no. 5, pp. 1161–1167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Q. Zhang, G. C. Ji, G. C. Wu, and Z. Q. Zhao, “Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats,” Pain, vol. 99, no. 3, pp. 525–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhang, G. T. Gibney, P. Zhao, and Y. Xia, “Neuroprotective role of δ-opioid receptors in cortical neurons,” American Journal of Physiology, vol. 282, no. 6, pp. C1225–C1234, 2002. View at Scopus
  8. J. Knabl, R. Witschi, K. Hösl et al., “Reversal of pathological pain through specific spinal GABAA receptor subtypes,” Nature, vol. 451, no. 7176, pp. 330–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Xia, G. Pei, and W. Schwarz, “Regulation of the glutamate transporter EAAC1 by expression and activation of δ-opioid receptor,” European Journal of Neuroscience, vol. 24, no. 1, pp. 87–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Schwarz and Q. B. Gu, “Cellular mechanisms in acupuncture points and affected sites,” in Current Research in Acupuncture, Y. Xia, G. H. Ding, and G.-C. Wu, Eds., pp. 37–51, Springer, 2012.
  11. J. H. Hu, N. Yang, Y. H. Ma et al., “Hyperalgesic effects of γ-aminobutyric acid transporter I in mice,” Journal of Neuroscience Research, vol. 73, no. 4, pp. 565–572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Schloss, W. Mayser, and H. Betz, “Neurotransmitter transporters. A novel family of integral plasma membrane proteins,” FEBS Letters, vol. 307, no. 1, pp. 76–80, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Keynan and B. I. Kanner, “γ-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes,” Biochemistry, vol. 27, no. 1, pp. 12–17, 1988. View at Scopus
  14. M. P. Kavanaugh, J. L. Arriza, R. A. North, and S. G. Amara, “Electrogenic uptake of γ-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22007–22009, 1992. View at Scopus
  15. S. Risso, L. J. DeFelice, and R. D. Blakely, “Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells,” Journal of Physiology, vol. 490, no. 3, pp. 691–702, 1996. View at Scopus
  16. D. W. Hilgemann and C. C. Lu, “GAT1 (GABA:Na+:Cl) cotransport function: database reconstruction with an alternating access model,” Journal of General Physiology, vol. 114, no. 3, pp. 459–475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. D. D. F. Loo, S. Eskandari, K. J. Boorer, H. K. Sarkar, and E. M. Wright, “Role of Cl in electrogenic NA+-coupled cotransporters GAT1 and SGLT1,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37414–37422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Krause and W. Schwarz, “Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1,” Molecular Pharmacology, vol. 68, no. 6, pp. 1728–1735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Mager, J. Naeve, M. Quick, C. Labarca, N. Davidson, and H. A. Lester, “Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes,” Neuron, vol. 10, no. 2, pp. 177–188, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mager, N. Kleinberger-Doron, G. I. Keshet, N. Davidson, B. I. Kanner, and H. A. Lester, “Ion binding and permeation at the GABA transporter GAT1,” Journal of Neuroscience, vol. 16, no. 17, pp. 5405–5414, 1996. View at Scopus
  21. Y. Liu, U. Eckstein-Ludwig, J. Fei, and W. Schwarz, “Effect of mutation of glycosylation sites on the Na+ dependence of steady-state and transient currents generated by the neuronal GABA transporter,” Biochimica et Biophysica Acta, vol. 1415, no. 1, pp. 246–254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bicho and C. Grewer, “Rapid substrate-induced charge movements of the GABA transporter GAT1,” Biophysical Journal, vol. 89, pp. 211–231, 2005. View at Publisher · View at Google Scholar
  23. U. Eckstein-Ludwig, Y. Fueta, J. Fei, and W. Schwarz, “The neuronal GABA transporter GAT1 as a target for action of antiepileptic drugs,” in Control and Diseases of Sodium Transport Proteins and Channels, Y. Suketa, E. Carafoli, M. Lazdunski, K. Mikoshiba, Y. Okada, and E. M. Wright, Eds., pp. 373–376, Elsevier Press, Amsterdam, The Netherlands, 2000.
  24. J. S. Han, “Acupuncture and endorphins,” Neuroscience Letters, vol. 361, no. 1–3, pp. 258–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Heinricher and H. Fields, “Molecular and effect of delta opioid compounds,” in The Delta Receptor, K. J. Chang, F. Porreca, and J. Woods, Eds., pp. 467–480, Marcel Dekker, New York, NY, USA, 2003.
  26. H. Fields, “State-dependent opioid control of pain,” Nature Reviews Neuroscience, vol. 5, no. 7, pp. 565–575, 2004. View at Scopus
  27. C. M. Cahill, A. Morinville, C. Hoffert, D. O'Donnell, and A. Beaudet, “Up-regulation and trafficking of δ opioid receptor in a model of chronic inflammation: implications for pain control,” Pain, vol. 101, no. 1-2, pp. 199–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Moore, T. Kohno, L. A. Karchewski, J. Scholz, H. Baba, and C. J. Woolf, “Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord,” Journal of Neuroscience, vol. 22, no. 15, pp. 6724–6731, 2002. View at Scopus
  29. L. Jasmin, M. V. Wu, and P. T. Ohara, “GABA puts a stop to pain,” CNS and Neurological Disorders, vol. 3, no. 6, pp. 487–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Miyamae, N. Fukushima, Y. Misu, and H. Ueda, “δ Opioid receptor mediates phospholipase C activation via Gi in Xenopus oocytes,” FEBS Letters, vol. 333, no. 3, pp. 311–314, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. K. A. Trujillo and H. Akil, “Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801,” Science, vol. 251, no. 4989, pp. 85–87, 1991. View at Scopus
  32. L. Pu, G. B. Bao, N. J. Xu, L. Ma, and G. Pei, “Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates,” Journal of Neuroscience, vol. 22, no. 5, pp. 1914–1921, 2002. View at Scopus
  33. N. Gong, Y. Li, G. Q. Cai et al., “GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation,” Journal of Neuroscience, vol. 29, no. 50, pp. 15836–15845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Erbs, L. Faget, G. Scherrer et al., “Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus,” Neuroscience, vol. 221, pp. 203–213, 2012. View at Publisher · View at Google Scholar
  35. J. Ortiz, H. W. Harris, X. Guitart, R. Z. Terwilliger, J. W. Haycock, and E. J. Nestler, “Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine,” Journal of Neuroscience, vol. 15, no. 2, pp. 1285–1297, 1995. View at Scopus
  36. N. J. Xu, L. Bao, H. P. Fan et al., “Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses,” Journal of Neuroscience, vol. 23, no. 11, pp. 4775–4784, 2003. View at Scopus
  37. K. Ullensvang, K. P. Lehre, J. Storm-Mathisen, and N. C. Danbolt, “Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT,” European Journal of Neuroscience, vol. 9, no. 8, pp. 1646–1655, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Schmalzing, S. Gloor, H. Omay, S. Kroner, H. Appelhans, and W. Schwarz, “Up-regulation of sodium pump activity in Xenopus laevis oocytes by expression of heterologous β1 subunits of the sodium pump,” Biochemical Journal, vol. 279, no. 2, pp. 329–336, 1991. View at Scopus
  39. A. V. Lafaire and W. Schwarz, “Voltage dependence of the rheogenic Na+/K+ ATPase in the membrane of oocytes of Xenopus laevis,” Journal of Membrane Biology, vol. 91, no. 1, pp. 43–51, 1986. View at Scopus
  40. L. A. Vasilets, T. Ohta, S. Noguchi, M. Kawamura, and W. Schwarz, “Voltage-dependent inhibition of the sodium pump by external sodium: species differences and possible role of the N-terminus of the α-subunit,” European Biophysics Journal, vol. 21, no. 6, pp. 433–443, 1993. View at Scopus
  41. Y. Zhu, L. A. Vasilets, J. Fei, L. Guo, and W. Schwarz, “Different functional roles of arginine residues 39 and 61 and tyrosine residue 98 in transport and channel mode of the glutamate transporter EAAC1,” Biochimica et Biophysica Acta, vol. 1665, no. 1-2, pp. 20–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Oguri, I. Yamada-Mori, and J. Shigezane, “Enhanced binding of morphine and nalorphine to opioid delta receptor by glucuronate and sulfate conjugations at the 6-position,” Life Sciences, vol. 41, no. 12, pp. 1457–1464, 1987. View at Scopus
  43. H. W. D. Matthes, R. Maldonado, F. Simonin et al., “Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene,” Nature, vol. 383, no. 6603, pp. 822–823, 1996. View at Scopus
  44. C. M. Constantino, I. Gomes, S. D. Stockton, M. P. Lim, and L. A. Devi, “Opioid receptor heteromers in analgesia,” Expert Reviews in Molecular Medicine, vol. 14, article e9, 2012.
  45. X. Zhang, L. Bao, and J. S. Guan, “Role of delivery and trafficking of δ-opioid peptide receptors in opioid analgesia and tolerance,” Trends in Pharmacological Sciences, vol. 27, no. 6, pp. 324–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. K. G. Commons, “Translocation of presynaptic delta opioid receptors in the ventrolateral periaqueductal gray after swim stress,” Journal of Comparative Neurology, vol. 464, no. 2, pp. 197–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Pomeranz and D. Chiu, “Naloxone blockade of acupuncture analgesia: endorphin implicated,” Life Sciences, vol. 19, no. 11, pp. 1757–1762, 1976. View at Scopus
  48. D. J. Mayer, D. D. Price, and A. Rafii, “Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone,” Brain Research, vol. 121, no. 2, pp. 368–372, 1977. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Kang, D. Chao, Q. Gu et al., “δ-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation,” Cellular and Molecular Life Sciences, vol. 66, no. 21, pp. 3505–3516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Deng, Z. Yang, Y. Li et al., “Interactions of Na+,K+-ATPase and co-expressed δ-opioid receptor,” Neuroscience Research, vol. 65, no. 3, pp. 222–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. J. Yang, G. B. Bao, H. P. Deng et al., “Interaction of δ-opioid receptor with membrane transporters: possible mechanisms in pain suppression by acupuncture,” Journal of Acupuncture and Tuina Science, vol. 6, no. 5, pp. 298–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Marazziti, S. Mandillo, C. Di Pietro, E. Golini, R. Matteoni, and G. P. Tocchini-Valentini, “GPR37 associates with the dopamine transporter to modulate dopamine uptake and behavioral responses to dopaminergic drugs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9846–9851, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. F. J. S. Lee, L. Pei, A. Moszczynska, B. Vukusic, P. J. Fletcher, and F. Liu, “Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor,” EMBO Journal, vol. 26, no. 8, pp. 2127–2136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Bie and Z. Z. Pan, “Trafficking of central opioid receptors and descending pain inhibition,” Molecular Pain, vol. 3, article 37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mansour, C. A. Fox, H. Akil, and S. J. Watson, “Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications,” Trends in Neurosciences, vol. 18, no. 1, pp. 22–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Barbaresi, G. Gazzanelli, and M. Malatesta, “GABA transporter-1 (GAT-1) immunoreactivity in the cat periaqueductal gray matter,” Neuroscience Letters, vol. 250, no. 2, pp. 123–126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. M. W. Quick, J. L. Corey, N. Davidson, and H. A. Lester, “Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1,” Journal of Neuroscience, vol. 17, no. 9, pp. 2967–2979, 1997. View at Scopus
  58. L. G. Lou, L. Ma, and G. Pei, “Nociceptin/Orphanin FQ activates protein kinase C, and this effect is mediated through phospholipase C/Ca2+ pathway,” Biochemical and Biophysical Research Communications, vol. 240, no. 2, pp. 304–308, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. L. G. Lou and G. Pei, “Modulation of protein kinase C and cAMP-dependent protein kinase by δ-opioid,” Biochemical and Biophysical Research Communications, vol. 236, no. 3, pp. 626–629, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. A. N. M. Schoffelmeer, L. J. M. J. Vanderschuren, T. J. De Vries, F. Hogenboom, G. Wardeh, and A. H. Mulder, “Synergistically interacting dopamine D1 and NMDA receptors mediate nonvesicular transporter-dependent GABA release from rat striatal medium spiny neurons,” Journal of Neuroscience, vol. 20, no. 9, pp. 3496–3503, 2000. View at Scopus
  61. M. L. Beckman and M. W. Quick, “Neurotransmitter transporters: regulators of function and functional regulation,” Journal of Membrane Biology, vol. 164, no. 1, pp. 1–10, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. J. L. Corey, N. Davidson, H. A. Lester, N. Brecha, and M. W. Quick, “Protein kinase C modulates the activity of a cloned γ-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14759–14767, 1994. View at Scopus
  63. S. L. Deken, M. L. Beckman, L. Boos, and M. W. Quick, “Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A,” Nature Neuroscience, vol. 3, no. 10, pp. 998–1003, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. M. L. Beckman, E. M. Bernstein, and M. W. Quick, “Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A,” Journal of Neuroscience, vol. 18, no. 16, pp. 6103–6112, 1998. View at Scopus
  65. G. Ogimoto, G. A. Yudowski, C. J. Barker et al., “G protein-coupled receptors regulate Na+,K+-ATPase activity and endocytosis by modulating the recruitment of adaptor protein 2 and clathrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3242–3247, 2000. View at Scopus
  66. S. K. Shenoy and R. J. Lefkowitz, “Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling,” Biochemical Journal, vol. 375, no. 3, pp. 503–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. O. El Far and H. Betz, “G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes,” Biochemical Journal, vol. 365, no. 2, pp. 329–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Zhu, J. Fei, and W. Schwarz, “Expression and transport function of the glutamate transporter EAAC1 in Xenopus oocytes is regulated by syntaxin 1A,” Journal of Neuroscience Research, vol. 79, no. 4, pp. 503–508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Illes, “Modulation of transmitter and hormone release by multiple neuronal opioid receptors.,” Reviews of Physiology Biochemistry and Pharmacology, vol. 112, pp. 139–233, 1989. View at Scopus
  70. M. H. Heijna, F. Hogenboom, A. H. Mulder, and A. N. M. Schoffelmeer, “Opioid receptor-mediated inhibition of 3H-dopamine and 14C-acetylcholine release from rat nucleus accumbens slices. A study on the possible involvement of K+ channels and adenylate cyclase,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 345, no. 6, pp. 627–632, 1992. View at Publisher · View at Google Scholar · View at Scopus
  71. D. A. Eisinger, H. Ammer, and R. Schulz, “Chronic morphine treatment inhibits opioid receptor desensitization and internalization,” Journal of Neuroscience, vol. 22, no. 23, pp. 10192–10200, 2002. View at Scopus
  72. D. Chao and Y. Xia, “Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it?” Progress in Neurobiology, vol. 90, no. 4, pp. 439–470, 2010. View at Publisher · View at Google Scholar · View at Scopus