About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 819632, 12 pages
http://dx.doi.org/10.1155/2012/819632
Research Article

Antimigratory Effects of the Methanol Extract from Momordica charantia on Human Lung Adenocarcinoma CL1 Cells

1Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
2Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
3Department of Anatomy, Tzu-Chi University, Hualien, Taiwan
4Hualien District Agricultural Research and Extension Station, Hualien, Taiwan
5National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan

Received 24 June 2012; Revised 26 October 2012; Accepted 12 November 2012

Academic Editor: Jen-Hwey Chiu

Copyright © 2012 Hsue-Yin Hsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Meng and L. Ma, “Progression in therapy of erlotinib for patients with non-small cell lung cancer,” Chinese Journal of Lung Cancer, vol. 12, no. 12, pp. 1352–1355, 2009.
  2. K. M. Fong, Y. Sekido, and J. D. Minna, “Molecular pathogenesis of lung cancer,” The Journal of Thoracic and Cardiovascular Surgery, vol. 118, no. 6, pp. 1136–1152, 1999. View at Publisher · View at Google Scholar
  3. W. G. Cance, J. E. Harris, M. V. Iacocca et al., “Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes,” Clinical Cancer Research, vol. 6, no. 6, pp. 2417–2423, 2000. View at Scopus
  4. C. R. Hauck, D. J. Sieg, D. A. Hsia et al., “Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells,” Cancer Research, vol. 61, no. 19, pp. 7079–7090, 2001. View at Scopus
  5. C. R. Hauck, D. A. Hsia, X. S. Puente, D. A. Cheresh, and D. D. Schlaepfer, “FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth,” The EMBO Journal, vol. 21, no. 23, pp. 6289–6302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Shen, L. Xu, T. K. Owonikoko et al., “NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCiota/FAK loop,” Cancer Letters, vol. 318, no. 1, pp. 106–113, 2012. View at Publisher · View at Google Scholar
  7. B. S. Verbeek, T. M. Vroom, and G. Rijksen, “Overexpression of c-Src enhances cell-matrix adhesion and cell migration in PDGF-stimulated NIH3T3 fibroblasts,” Experimental Cell Research, vol. 248, no. 2, pp. 531–537, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. D. Schlaepfer and S. K. Mitra, “Multiple connections link FAK to cell motility and invasion,” Current Opinion in Genetics & Development, vol. 14, no. 1, pp. 92–101, 2004. View at Publisher · View at Google Scholar
  9. X. M. Xu, Y. Zhang, D. Qu, X. W. Feng, Y. Chen, and L. Zhao, “Osthole suppresses migration and invasion of A549 human lung cancer cells through inhibition of matrix metalloproteinase-2 and matrix metallopeptidase-9 in vitro,” Molecular Medicine Reports, vol. 6, no. 5, pp. 1018–1022, 2012.
  10. M. Bienz and H. Clevers, “Linking colorectal cancer to Wnt signaling,” Cell, vol. 103, no. 2, pp. 311–320, 2000. View at Publisher · View at Google Scholar
  11. L. You, B. He, Z. Xu et al., “Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells,” Oncogene, vol. 23, no. 36, pp. 6170–6174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. W. J. Nelson and R. Nusse, “Convergence of Wnt, beta-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar
  13. K. M. Cadigan, “Wnt-beta-catenin signaling,” Current Biology, vol. 18, no. 20, pp. R943–R947, 2008. View at Publisher · View at Google Scholar
  14. Y. W. Chu, P. C. Yang, S. C. Yang et al., “Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 3, pp. 353–360, 1997. View at Scopus
  15. M. J. Tan, J. M. Ye, N. Turner et al., “Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway,” Chemistry and Biology, vol. 15, no. 3, pp. 263–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Lee-Huang, P. L. Huang, A. S. Bourinbaiar, H. C. Chen, and H. F. Kung, “Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 19, pp. 8818–8822, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Das, S. P. Sinhababu, and T. Dam, “Screening of antihelminthic effects of Indian plant extracts: a preliminary report,” Journal of Alternative and Complementary Medicine, vol. 12, no. 3, pp. 299–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Schreiber, L. Wan, Y. Sun, L. Lu, L. C. Krey, and S. Lee-Huang, “The antiviral agents, MAP30 and GAP31, are not toxic to human spermatozoa and may be useful in preventing the sexual transmission of human immunodeficiency virus type 1,” Fertility and Sterility, vol. 72, no. 4, pp. 686–690, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. R. B. Ray, A. Raychoudhuri, R. Steele, and P. Nerurkar, “Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis,” Cancer Research, vol. 70, no. 5, pp. 1925–1931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Limtrakul, O. Khantamat, and K. Pintha, “Inhibition of P-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract,” Cancer Chemotherapy and Pharmacology, vol. 54, no. 6, pp. 525–530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Pitchakarn, K. Ogawa, S. Suzuki et al., “Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo,” Cancer Science, vol. 101, no. 10, pp. 2234–2240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Wang, Y. Cai, X. Q. Zhang et al., “New triterpenoid glycosides from the roots of Ilex asprella,” Carbohydrate Research, vol. 349, pp. 39–43, 2012. View at Publisher · View at Google Scholar
  23. S. Lee-Huang, P. L. Huang, H. C. Chen et al., “Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon,” Gene, vol. 161, no. 2, pp. 151–156, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Lee-Huang, P. L. Huang, Y. Sun et al., “Inhibition of MDA-MB-231 human breast tumor xenografts and HER2 expression by anti-tumor agents GAP31 and MAP30,” Anticancer Research, vol. 20, no. 2, pp. 653–659, 2000. View at Scopus
  25. C. J. Li, S. F. Tsang, C. H. Tsai, H. Y. Tsai, J. H. Chyuan, and H. Y. Hsu, “Momordica charantia extract induces apoptosis in human cancer cells through caspase- and mitochondria-dependent pathways,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 261971, 11 pages, 2012. View at Publisher · View at Google Scholar
  26. D. A. E. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, “Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B,” Nature, vol. 378, no. 6559, pp. 785–789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Satelli and S. Li, “Vimentin in cancer and its potential as a molecular target for cancer therapy,” Cellular and Molecular Life Sciences, vol. 68, no. 18, pp. 3033–3046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. P. Gupta and J. Massagué, “Cancer metastasis: building a framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Sakurai, A. Maeshima, S. I. Watanabe et al., “Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis,” American Journal of Surgical Pathology, vol. 28, no. 2, pp. 198–206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Shieh, T. H. Cheng, M. D. Shi et al., “Alpha-tomatine suppresses invasion and migration of human non-small cell lung cancer NCI-H460 cells through inactivating FAK/PI3K/Akt signaling pathway and reducing binding activity of NF-kappaB,” Cell Biochemistry and Biophysics, vol. 60, no. 3, pp. 297–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Zhao and J. L. Guan, “Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis,” Advanced Drug Delivery Reviews, vol. 63, no. 8, pp. 610–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, “Focal adhesion kinase: in command and control of cell motility,” Nature Reviews Molecular Cell Biology, vol. 6, no. 1, pp. 56–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Shibata, F. Kikkawa, A. Nawa et al., “Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells,” Cancer Research, vol. 58, no. 5, pp. 900–903, 1998. View at Scopus
  34. J. K. Slack-Davis, K. H. Martin, R. W. Tilghman et al., “Cellular characterization of a novel focal adhesion kinase inhibitor,” The Journal of Biological Chemistry, vol. 282, no. 20, pp. 14845–14852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. P. Eliceiri, X. S. Puente, J. D. Hood et al., “Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling,” Journal of Cell Biology, vol. 157, no. 1, pp. 149–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. W. G. Roberts, E. Ung, P. Whalen et al., “Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271,” Cancer Research, vol. 68, no. 6, pp. 1935–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Iiizumi, W. Liu, S. K. Pai, E. Furuta, and K. Watabe, “Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy,” Biochimica et Biophysica Acta, vol. 1786, no. 2, pp. 87–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Sienel, J. Hellers, A. Morresi-Hauf et al., “Prognostic impact of matrix metalloproteinase-9 in operable non-small cell lung cancer,” International Journal of Cancer, vol. 103, no. 5, pp. 647–651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Passlick, W. Sienel, R. Seen-Hibler et al., “Overexpression of matrix metalloproteinase 2 predicts unfavorable outcome in early-stage non-small cell lung cancer,” Clinical Cancer Research, vol. 6, no. 10, pp. 3944–3948, 2000. View at Scopus
  40. L. C. Cantley, “The phosphoinositide 3-kinase pathway,” Science, vol. 296, no. 5573, pp. 1655–1657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Brugge, M. C. Hung, and G. B. Mills, “A new mutational aktivation in the PI3K pathway,” Cancer Cell, vol. 12, no. 2, pp. 104–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. P. G. Rychahou, J. Kang, P. Gulhati et al., “Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20315–20320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Dahlhoff, A. Siegmund, Y. Golub, E. Wolf, F. Holsboer, and C. T. Wotjak, “AKT/GSK-3β/β-catenin signalling within hippocampus and amygdala reflects genetically determined differences in posttraumatic stress disorder like symptoms,” Neuroscience, vol. 169, no. 3, pp. 1216–1226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. W. Qiang, K. Walsh, L. Yao et al., “Wnts induce migration and invasion of myeloma plasma cells,” Blood, vol. 106, no. 5, pp. 1786–1793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Bienz, “β-catenin: a pivot between cell adhesion and Wnt signalling,” Current Biology, vol. 15, no. 2, pp. R64–R67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Song, Q. X. Yang, F. Zhang et al., “Suppression of nasopharyngeal carcinoma cell by targeting beta-catenin signaling pathway,” Cancer Epidemiology, vol. 36, no. 2, pp. e116–e121, 2012. View at Publisher · View at Google Scholar
  47. J. Gwak, J. H. Lee, Y. H. Chung, G. Y. Song, and S. Oh, “Small molecule-based promotion of PKCalpha-mediated beta-catenin degradation suppresses the proliferation of CRT-positive cancer cells,” PLOS ONE, vol. 7, no. 10, Article ID e46697, 2012.
  48. T. Nakashima, D. Liu, J. Nakano et al., “Wnt1 overexpression associated with tumor proliferation and a poor prognosis in non-small cell lung cancer patients,” Oncology Reports, vol. 19, no. 1, pp. 203–209, 2008. View at Scopus
  49. H. Kausar, J. Jeyabalan, F. Aqil et al., “Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells,” Cancer Letters, vol. 325, no. 1, pp. 54–62, 2012. View at Publisher · View at Google Scholar
  50. N. G. Kim, C. Xu, and B. M. Gumbiner, “Identification of targets of the Wnt pathway destruction complex in addition to β-catenin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5165–5170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. T. Veeman, J. D. Axelrod, and R. T. Moon, “A second canon: functions and mechanisms of β-catenin-independent Wnt signaling,” Developmental Cell, vol. 5, no. 3, pp. 367–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. I. Yook, X. Y. Li, I. Ota, E. R. Fearon, and S. J. Weiss, “Wnt-dependent regulation of the E-cadherin repressor snail,” The Journal of Biological Chemistry, vol. 280, no. 12, pp. 11740–11748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. L. C. Fuentealba, E. Eivers, A. Ikeda et al., “Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal,” Cell, vol. 131, no. 5, pp. 980–993, 2007. View at Publisher · View at Google Scholar · View at Scopus