About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 837581, 10 pages
http://dx.doi.org/10.1155/2012/837581
Research Article

Curative Effects of Oleanolic Acid on Formed Hypertrophic Scars in the Rabbit Ear Model

1Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
2Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
3Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
4Shanghai Anshan Experimental Middle School, Shanghai 200433, China
5The School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK

Received 9 November 2012; Revised 11 December 2012; Accepted 11 December 2012

Academic Editor: Ke Liu

Copyright © 2012 Hong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O'Leary, E. J. Wood, and P. J. Guillou, “Pathological scarring: strategic interventions,” European Journal of Surgery, vol. 168, no. 10, pp. 523–534, 2002. View at Scopus
  2. O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Archives of Dermatological Research, vol. 297, no. 10, pp. 433–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Mazharinia, S. Aghaei, and Z. Shayan, “Dermatology life quality index (DLQI) scores in burn victims after revival,” Journal of Burn Care and Research, vol. 28, no. 2, pp. 312–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. G. Reish and E. Eriksson, “Scar treatments: preclinical and clinical studies,” Journal of the American College of Surgeons, vol. 206, no. 4, pp. 719–730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. C. T. Bloemen, W. M. van der Veer, M. M. W. Ulrich, P. P. M. van Zuijlen, F. B. Niessen, and E. Middelkoop, “Prevention and curative management of hypertrophic scar formation,” Burns, vol. 35, no. 4, pp. 463–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Du, L. N. Sun, W. W. Xing et al., “Lipid-lowering effects of polydatin from Polygonum cuspidatum in hyperlipidemic hamsters,” Phytomedicine, vol. 16, no. 6-7, pp. 652–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. G. Wu, J. Z. Wu, L. N. Sun, et al., “Ameliorative effects of arctiin from Arctiumlappa on experimental glomerulonephritis in rats,” Phytomedicine, vol. 16, no. 11, pp. 1033–1041, 2009. View at Publisher · View at Google Scholar
  8. W. W. Xing, J. Z. Wu, M. Jia, J. Du, H. Zhang, and L. P. Qin, “Effects of polydatin from Polygonum cuspidatum on lipid profile in hyperlipidemic rabbits,” Biomedicine and Pharmacotherapy, vol. 63, no. 7, pp. 457–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Reisman, L. M. Aleksunes, and C. D. Klaassen, “Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes,” Biochemical Pharmacology, vol. 77, no. 7, pp. 1273–1282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wang, X. Ye, and R. Liu, “Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases,” Chemico-Biological Interactions, vol. 184, no. 3, pp. 328–337, 2010. View at Publisher · View at Google Scholar
  11. D. Gao, Q. Li, Y. Li, et al., “Antidiabetic potential of oleanolic acid from Liqustrum lucidum Ait,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 11, pp. 1076–1083, 2007. View at Publisher · View at Google Scholar
  12. C. L. de Melo, M. G. R. Queiroz, S. G. C. Fonseca et al., “Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet,” Chemico-Biological Interactions, vol. 185, no. 1, pp. 59–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. H. Buus, N. C. Hansson, R. Rodriguez-Rodriguez, et al., “Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice,” European Journal of Pharmacology, vol. 670, no. 2-3, pp. 519–526, 2011. View at Publisher · View at Google Scholar
  14. B. Chakravarti, R. Maurya, J. A. Siddiqui, et al., “In vitro anti-breast cancer activity of ethanolic extract of Wrightiato mentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid,” Journal of Ethnopharmacology, vol. 142, no. 1, pp. 72–79, 2012. View at Publisher · View at Google Scholar
  15. E. J. Yang, W. Lee, S. K. Ku, et al., “Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs,” Food and Chemical Toxicology, vol. 50, no. 5, pp. 1288–1294, 2012. View at Publisher · View at Google Scholar
  16. Y. J. Wei, X. Q. Yan, and L. Ma, “Oleanolic acid inhibits hypertrophic scarring in the rabbit ear model,” Clinical and Experimental Dermatology, vol. 36, no. 5, pp. 528–533, 2012.
  17. Z. B. Kryger, M. Sisco, N. K. Roy, L. Lu, D. Rosenberg, and T. A. Mustoe, “Temporal expression of the transforming growth factor-β pathway in the rabbit ear model of wound healing and scarring,” Journal of the American College of Surgeons, vol. 205, no. 1, pp. 78–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhang, X. Ran, C. L. Hu, et al., “Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model,” PloS ONE, vol. 7, no. 2, Article ID e31157, 2012.
  19. J. Du, Y. J. Wei, C. Peng et al., “Establishment of a luciferase assay-based screening system for detecting estrogen receptor agonists in plant extracts,” Bone, vol. 49, no. 3, pp. 572–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. B. Niessen, P. H. M. Spauwen, J. Schalkwijk, and M. Kon, “On the nature of hypertrophic scars and keloids: a review,” Plastic and Reconstructive Surgery, vol. 104, no. 5, pp. 1435–1458, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. K. Dasu, H. K. Hawkins, R. E. Barrow, H. Xue, and D. N. Herndon, “Gene expression profiles from hypertrophic scar fibroblasts before and after IL-6 stimulation,” Journal of Pathology, vol. 202, no. 4, pp. 476–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Manase, T. Endo, M. Chida et al., “Coordinated elevation of membrane type 1-matrix metalloproteinase and matrix metalloproteinase-2 expression in rat uterus during postpartum involution,” Reproductive Biology and Endocrinology, vol. 4, article 32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Egea, S. Zahler, N. Rieth, et al., “Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 45, pp. 309–316, 2012. View at Publisher · View at Google Scholar
  24. F. Umenishi, M. Umeda, and K. Miyazaki, “Efficient purification of TIMP-2 from culture medium conditioned by human hepatoma cell line, and its inhibitory effects on metalloproteinases and in vitro tumor invasion,” Journal of Biochemistry, vol. 110, no. 2, pp. 189–195, 1991. View at Scopus
  25. P. Schmid, P. Itin, G. Cherry, C. Bi, and D. A. Cox, “Enhanced expression of transforming growth factor-β type I and type II receptors in wound granulation tissue and hypertrophic scar,” American Journal of Pathology, vol. 152, no. 2, pp. 485–493, 1998. View at Scopus
  26. J. Wu, D. Chen, and Z. Wu, “Quantitative study on the expression of mRNA for TGF-β and metalloproteinase-1 (MMP-1), metallopeptidase-1(TIMP-1) in hypertrophic scar,” Chinese Journal of Plastic Surgery and Burns, vol. 16, no. 1, pp. 34–36, 2000.
  27. P. Zhang, L. Ji, J. P. Li, et al., “Dynamic changes of matrixmetalloproteinase-1(MMP-1) and tissue inhibitor of metallopeptidase-1(TIMP-1) in hypertrophic scar,” China Journal of Modern Medicine, vol. 20, no. 11, pp. 1665–1668, 2010.
  28. J. Xu, Z. Di, Z. Zhou, and L. Cui, “Expressions of matrix metalloproteinase-2 and metalloproteinase-9 in keloid and hypertrophic scar,” Chinese Journal of Histochemistry and Cytochemistry, vol. 16, no. 1, pp. 67–70, 2007.
  29. J. Wu, B. Ma, S. Yi et al., “Gene expression of early hypertrophic scar tissue screened by means of cDNA microarrays,” Journal of Trauma—Injury, Infection and Critical Care, vol. 57, no. 6, pp. 1276–1286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Tan, X. Peng, G. Luo et al., “Investigating the role of P311 in the hypertrophic scar,” PLoS ONE, vol. 5, no. 4, Article ID e9995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. L. Tuan and L. S. Nichter, “The molecular basis of keloid and hypertrophic scar formation,” Molecular Medicine Today, vol. 4, no. 1, pp. 19–24, 1998. View at Publisher · View at Google Scholar · View at Scopus