About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 908601, 12 pages
http://dx.doi.org/10.1155/2012/908601
Research Article

Herbal Compound “Songyou Yin” Renders Hepatocellular Carcinoma Sensitive to Oxaliplatin through Inhibition of Stemness

1Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
2Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China

Received 12 October 2012; Accepted 12 November 2012

Academic Editor: Hui-Fen Liao

Copyright © 2012 Qing-An Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. L. Ye, T. Takayama, J. Geschwind, J. A. Marrero, and J. P. Bronowicki, “Current approaches to the treatment of early hepatocellular carcinoma,” The Oncologist, vol. 15, supplement 4, pp. 34–41, 2010. View at Scopus
  3. J. Bruix, M. Sala, and J. M. Llovet, “Chemoembolization for hepatocellular carcinoma,” Gastroenterology, vol. 127, pp. S179–S188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. B. El-Serag, “Hepatocellular carcinoma,” New England Journal of Medicine, vol. 365, pp. 1118–1127, 2011. View at Publisher · View at Google Scholar
  5. B. I. Carr, “Hepatocellular carcinoma: current management and future trends,” Gastroenterology, vol. 127, no. 5, supplement 1, pp. S218–S224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Aguayo and Y. Z. Patt, “Nonsurgical treatment of hepatocellular carcinoma,” Seminars in Oncology, vol. 28, no. 5, pp. 503–513, 2001. View at Scopus
  7. A. D. Yang, F. Fan, E. R. Camp et al., “Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines,” Clinical Cancer Research, vol. 12, no. 14, pp. 4147–4153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. N. Shah, J. M. Summy, J. Zhang, S. I. Park, N. U. Parikh, and G. E. Gallick, “Development and characterization of gemcitabine-resistant pancreatic tumor cells,” Annals of Surgical Oncology, vol. 14, no. 12, pp. 3629–3637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. De Larco, B. R. K. Wuertz, J. C. Manivel, and L. T. Furcht, “Progression and enhancement of metastatic potential after exposure of tumor cells to chemotherapeutic agents,” Cancer Research, vol. 61, no. 7, pp. 2857–2861, 2001. View at Scopus
  10. H. Kajiyama, K. Shibata, M. Terauchi et al., “Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells,” International Journal of Oncology, vol. 31, no. 2, pp. 277–283, 2007. View at Scopus
  11. K. Yamauchi, M. Yang, K. Hayashi et al., “Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy,” Cancer Research, vol. 68, no. 2, pp. 516–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Yamashita, J. Ji, A. Budhu et al., “EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features,” Gastroenterology, vol. 136, no. 3, pp. 1012–e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. K. W. Lee, A. Castilho, V. C. H. Cheung, K. H. Tang, S. Ma, and I. O. L. Ng, “CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation,” Cell Stem Cell, vol. 9, no. 1, pp. 50–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. L. Liu, D. Fu, Y. Ma, and X. Z. Shen, “The power and the promise of liver cancer stem cell markers,” Stem Cells and Development, vol. 20, no. 12, pp. 2023–2030, 2011. View at Publisher · View at Google Scholar
  16. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. T. Jordan and M. L. Guzman, “Mechanisms controlling pathogenesis and survival of leukemic stem cells,” Oncogene, vol. 23, no. 43, pp. 7178–7187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. T. Costello, F. Mallet, B. Gaugler et al., “Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities,” Cancer Research, vol. 60, no. 16, pp. 4403–4411, 2000. View at Scopus
  19. G. Liu, X. Yuan, Z. Zeng et al., “Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma,” Molecular Cancer, vol. 5, p. 67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Xiong, Z. G. Ren, S. J. Qiu et al., “Residual hepatocellular carcinoma after oxaliplatin treatment has increased metastatic potential in a nude mouse model and is attenuated by Songyou Yin,” BMC Cancer, vol. 10, p. 219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. G. Hollier, K. Evans, and S. A. Mani, “The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 29–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Peter, “Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression,” Cell Cycle, vol. 8, no. 6, pp. 843–852, 2009. View at Scopus
  24. M. Santisteban, J. M. Reiman, M. K. Asiedu, et al., “Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells,” Cancer Research, vol. 69, pp. 2887–2895, 2009. View at Publisher · View at Google Scholar
  25. C. M. Tong, S. Ma, and X. Y. Guan, “Biology of hepatic cancer stem cells,” Journal of Gastroenterology and Hepatology, vol. 26, no. 8, pp. 1229–1237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Tian, Z. Y. Tang, S. L. Ye et al., “New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis,” British Journal of Cancer, vol. 81, no. 5, pp. 814–821, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Li, Z. Y. Tang, S. L. Ye et al., “Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97,” World Journal of Gastroenterology, vol. 7, no. 5, pp. 630–636, 2001. View at Scopus
  28. B. W. Yang, Y. Liang, J. L. Xia et al., “Biological characteristics of fluorescent protein-expressing human hepatocellular carcinoma xenograft model in nude mice,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 11, pp. 1077–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Y. Huang, L. Wang, Z. L. Huang, Q. Zheng, Q. S. Li, and Z. Y. Tang, “Herbal extract Songyou Yin inhibits tumor growth and prolongs survival in nude mice bearing human hepatocellular carcinoma xenograft with high metastatic potential,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 9, pp. 1245–1255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Gao, S. J. Qiu, J. Fan et al., “Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection,” Journal of Clinical Oncology, vol. 25, no. 18, pp. 2586–2593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Scopus
  32. Y. Huang, P. Anderle, K. J. Bussey et al., “Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance,” Cancer Research, vol. 64, no. 12, pp. 4294–4301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Elliot, J. Adams, and M. Al-Hajj, “The ABCs of cancer stem cell drug resistance,” IDrugs, vol. 13, no. 9, pp. 632–635, 2010. View at Scopus
  34. J. Gil, A. Stembalska, K. A. Pesz, and M. M. Sasiadek, “Cancer stem cells: the theory and perspectives in cancer therapy,” Journal of Applied Genetics, vol. 49, no. 2, pp. 193–199, 2008. View at Scopus
  35. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. R. C. Zhao, Y. S. Zhu, and Y. Shi, “New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells,” Pharmacology and Therapeutics, vol. 119, no. 1, pp. 74–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. R. Alison, W. R. Lin, S. M. Lim, and L. J. Nicholson, “Cancer stem cells: in the line of fire,” Cancer Treatment Reviews, vol. 38, no. 6, pp. 589–598, 2012. View at Publisher · View at Google Scholar
  40. V. Tirino, V. Desiderio, F. Paino, G. Papaccio, and M. De Rosa, “Methods for cancer stem cell detection and isolation,” Methods in Molecular Biology, vol. 879, pp. 513–529, 2012. View at Publisher · View at Google Scholar
  41. S. L. Yuan, R. M. Huang, X. J. Wang, Y. Song, and G. Q. Huang, “Reversing effect of Tanshinone on malignant phenotypes of human hepatocarcinoma cell line,” World Journal of Gastroenterology, vol. 4, no. 1–6, pp. 317–319, 1998. View at Scopus
  42. M. M. Y. Tin, C. H. Cho, K. Chan, A. E. James, and J. K. S. Ko, “Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft,” Carcinogenesis, vol. 28, no. 6, pp. 1347–1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Campos, F. Wan, M. Farhadi et al., “Differentiation therapy exerts antitumor effects on stem-like glioma cells,” Clinical Cancer Research, vol. 16, no. 10, pp. 2715–2728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Rajan and R. Srinivasan, “Targeting cancer stem cells in cancer prevention and therapy,” Stem Cell Reviews, vol. 4, no. 3, pp. 211–216, 2008. View at Publisher · View at Google Scholar · View at Scopus