About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 934085, 11 pages
http://dx.doi.org/10.1155/2012/934085
Research Article

Partly Separated Activations in the Spatial Distribution between de-qi and Sharp Pain during Acupuncture Stimulation: An fMRI-Based Study

1Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
2Huaxi MR Research Center (HMRRC), Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
3Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 9 October 2012; Revised 4 December 2012; Accepted 5 December 2012

Academic Editor: Gerhard Litscher

Copyright © 2012 Jinbo Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bai, W. Qin, J. Tian et al., “Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks,” Brain Research, vol. 1279, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Bai, J. Tian, C. Zhong et al., “Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study,” Molecular Pain, vol. 6, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. Dhond, C. Yeh, K. Park, N. Kettner, and V. Napadow, “Acupuncture modulates resting state connectivity in default and sensorimotor brain networks,” Pain, vol. 136, no. 3, pp. 407–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Qin, J. Tian, L. Bai et al., “FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network,” Molecular Pain, vol. 4, article 55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Fang, Z. Jin, Y. Wang et al., “The salient characteristics of the central effects of acupuncture needling: limbic-paralimbic-neocortical network modulation,” Human Brain Mapping, vol. 30, no. 4, pp. 1196–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. K. S. Hui, J. Liu, O. Marina et al., “The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI,” NeuroImage, vol. 27, no. 3, pp. 479–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Napadow, N. Makris, J. Liu, N. W. Kettner, K. K. Kwong, and K. K. S. Hui, “Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI,” Human Brain Mapping, vol. 24, no. 3, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Yoo, E. K. Teh, R. A. Blinder, and F. A. Jolesz, “Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study,” NeuroImage, vol. 22, no. 2, pp. 932–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Beissner, “Functional magnetic resonance imaging studies of acupuncture mechanisms: a critique,” Focus on Alternative and Complementary Therapies, vol. 16, no. 1, pp. 3–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kong, R. L. Gollub, J. M. Webb, J. T. Kong, M. G. Vangel, and K. Kwong, “Test-retest study of fMRI signal change evoked by electroacupuncture stimulation,” NeuroImage, vol. 34, no. 3, pp. 1171–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Sun, W. Qin, M. Dong et al., “Evaluation of group homogeneity during acupuncture stimulation in fMRI studies,” Journal of Magnetic Resonance Imaging, vol. 32, no. 2, pp. 298–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Beissner, R. Deichmann, C. Henke, and K. J. Bär, “Acupuncture—deep pain with an autonomic dimension?” NeuroImage, vol. 60, pp. 653–660, 2012.
  13. H. MacPherson and A. Asghar, “Acupuncture needle sensations associated with De Qi: a classification based on experts' ratings,” Journal of Alternative and Complementary Medicine, vol. 12, no. 7, pp. 633–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kong, R. Gollub, T. Huang et al., “Acupuncture De Qi, from qualitative history to quantitative measurement,” Journal of Alternative and Complementary Medicine, vol. 13, no. 10, pp. 1059–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Vincent, P. H. Richardson, J. J. Black, and C. E. Pither, “The significance of needle placement site in acupuncture,” Journal of Psychosomatic Research, vol. 33, no. 4, pp. 489–496, 1989. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Park, A. White, C. Stevinson, E. Ernst, and M. James, “Validating a new non-penetrating sham acupuncture device: two randomised controlled trials,” Acupuncture in Medicine, vol. 20, no. 4, pp. 168–174, 2002. View at Scopus
  17. P. White, F. Bishop, H. Hardy et al., “Southampton needle sensation questionnaire: development and validation of a measure to gauge acupuncture needle sensation,” Journal of Alternative and Complementary Medicine, vol. 14, no. 4, pp. 373–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. U. Asghar, G. Green, M. F. Lythgoe, G. Lewith, and H. MacPherson, “Acupuncture needling sensation: the neural correlates of deqi using fMRI,” Brain Research, vol. 1315, pp. 111–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. K. Hui, J. Liu, N. Makris et al., “Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects,” Human Brain Mapping, vol. 9, no. 1, pp. 13–25, 2000.
  20. K. K. S. Hui, O. Marina, J. D. Claunch et al., “Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects,” Brain Research, vol. 1287, pp. 84–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. J. Na, G. H. Jahng, S. U. Park et al., “An fMRI study of neuronal specificity of an acupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its sham point,” Neuroscience Letters, vol. 464, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Bai, H. Yan, N. Li et al., “Neural specificity of acupuncture stimulation at pericardium 6: evidence from an fMRI study,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 71–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. K. S. Hui, O. Marina, J. Liu, B. R. Rosen, and K. K. Kwong, “Acupuncture, the limbic system, and the anticorrelated networks of the brain,” Autonomic Neuroscience: Basic and Clinical, vol. 157, no. 1-2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. Henderson, S. C. Gandevia, and V. G. Macefield, “Gender differences in brain activity evoked by muscle and cutaneous pain: a retrospective study of single-trial fMRI data,” NeuroImage, vol. 39, no. 4, pp. 1867–1876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. K. Aguirre, E. Zarahn, and M. D'Esposito, “The inferential impact of global signal covariates in functional neuroimaging analyses,” NeuroImage, vol. 8, no. 3, pp. 302–306, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. E. Desjardins, K. A. Kiehl, and P. F. Liddle, “Removal of confounding effects of global signal in functional MRI analyses,” NeuroImage, vol. 13, no. 4, pp. 751–758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Gavrilescu, M. E. Shaw, G. W. Stuart, P. Eckersley, I. D. Svalbe, and G. F. Egan, “Simulation of the effects of global normalization procedures in functional MRI,” NeuroImage, vol. 17, no. 2, pp. 532–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Junghöfer, H. T. Schupp, R. Stark, and D. Vaitl, “Neuroimaging of emotion: empirical effects of proportional global signal scaling in fMRI data analysis,” NeuroImage, vol. 25, no. 2, pp. 520–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Sun, W. Qin, L. Jin et al., “Impact of global normalization in fMRI acupuncture studies,” Evidence-Based Complementary and Alternative Medicine. In press.
  30. L. A. Henderson, R. Bandler, S. C. Gandevia, and V. G. MacEfield, “Distinct forebrain activity patterns during deep versus superficial pain,” Pain, vol. 120, no. 3, pp. 286–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. Niddam, T. C. Yeh, Y. T. Wu et al., “Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation,” NeuroImage, vol. 17, no. 3, pp. 1437–1450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Maeda, M. Ono, T. Koyama et al., “Human brain activity associated with painful mechanical stimulation to muscle and bone,” Journal of Anesthesia, vol. 25, no. 4, pp. 523–530, 2011.
  33. T. Lewis, Pain, McMillan, New York, NY, USA, 1942.
  34. P. Svensson, S. Minoshima, A. Beydoun, T. J. Morrow, and K. L. Casey, “Cerebral processing of acute skin and muscle pain in humans,” Journal of Neurophysiology, vol. 78, no. 1, pp. 450–460, 1997. View at Scopus
  35. R. Bandler, J. L. Price, and K. A. Keay, “Brain mediation of active and passive emotional coping,” Progress in Brain Research, vol. 122, pp. 333–349, 2000. View at Scopus
  36. B. M. Lumb, “Hypothalamic and midbrain circuitry that distinguishes between escapable and inescapable pain,” News in Physiological Sciences, vol. 19, no. 1, pp. 22–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. P. W. Nathan, M. C. Smith, and A. W. Cook, “Sensory effects in man of lesions of the posterior columns and of some other afferent pathways,” Brain, vol. 109, no. 5, pp. 1003–1041, 1986. View at Scopus
  38. H. J. W. Nauta, V. M. Soukup, R. H. Fabian et al., “Punctate midline myelotomy for the relief of visceral cancer pain,” Journal of Neurosurgery, vol. 92, no. 2, pp. 125–130, 2000. View at Scopus
  39. W. Noordenbos and P. D. Wall, “Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant,” Pain, vol. 2, no. 2, pp. 185–195, 1976. View at Publisher · View at Google Scholar · View at Scopus
  40. A. C. N. Chen, M. Shimojo, P. Svensson, and L. Arendt-Nielsen, “Brain dynamics of scalp evoked potentials and current source densities to repetitive (5-pulse train) painful stimulation of skin and muscle: central correlate of temporal summation,” Brain Topography, vol. 13, no. 1, pp. 59–72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. D. M. Niddam, T. Graven-Nielsen, L. Arendt-Nielsen, and A. C. N. Chen, “Non-painful and painful surface and intramuscular electrical stimulation at the thenar and hypothenar sites: differential cerebral dynamics of early to late latency SEPs,” Brain Topography, vol. 13, no. 4, pp. 283–292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Shimojo, P. Svensson, L. Arendt-Nielsen, and A. C. N. Chen, “Dynamic brain topography of somatosensory evoked potentials and equivalent dipoles in response to graded painful skin and muscle stimulation,” Brain Topography, vol. 13, no. 1, pp. 43–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Svensson, A. Beydoun, T. J. Morrow, and K. L. Casey, “Non-painful and painful stimulation of human skin and muscle: analysis of cerebral evoked potentials,” Electroencephalography and Clinical Neurophysiology/Evoked Potentials, vol. 104, no. 4, pp. 343–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. S. J. Coen, M. Kano, A. D. Farmer et al., “Neuroticism influences brain activity during the experience of visceral pain,” Gastroenterology, vol. 141, no. 3, pp. 909–917, 2011.
  45. I. Tracey and P. W. Mantyh, “The cerebral signature for pain perception and its modulation,” Neuron, vol. 55, no. 3, pp. 377–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. O. Dostrovsky, “Role of thalamus in pain,” Progress in Brain Research, vol. 129, pp. 245–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. G. H. Duncan, M. C. Bushnell, J. D. Talbot et al., “Pain and activation in the thalamus,” Trends in Neurosciences, vol. 15, no. 7, pp. 252–253, 1992. View at Scopus
  48. F. A. Lenz, N. Weiss, S. Ohara, C. Lawson, and J. D. Greenspan, “The role of the thalamus in pain,” Supplements to Clinical Neurophysiology, vol. 57, pp. 50–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. May, “Neuroimaging: visualising the brain in pain,” Neurological Sciences, vol. 28, no. 2, pp. S101–S107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. B. W. Balleine, M. R. Delgado, and O. Hikosaka, “The role of the dorsal striatum in reward and decision-making,” Journal of Neuroscience, vol. 27, no. 31, pp. 8161–8165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Redgrave, T. J. Prescott, and K. Gurney, “The basal ganglia: a vertebrate solution to the selection problem?” Neuroscience, vol. 89, no. 4, pp. 1009–1023, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. C. J. Starr, L. Sawaki, G. F. Wittenberg et al., “The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions,” Brain, vol. 134, no. 7, pp. 1987–2004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. E. A. Moulton, J. D. Schmahmann, L. Becerra, and D. Borsook, “The cerebellum and pain: passive integrator or active participator?” Brain Research Reviews, vol. 65, no. 1, pp. 14–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Downar, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “A multimodal cortical network for the detection of changes in the sensory environment,” Nature Neuroscience, vol. 3, no. 3, pp. 277–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Downar, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study,” NeuroImage, vol. 14, no. 6, pp. 1256–1267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Downar, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities,” Journal of Neurophysiology, vol. 87, no. 1, pp. 615–620, 2002. View at Scopus
  57. I. García-García, M. A. Jurado, M. Garolera et al., “Alterations of the salience network in obesity: a resting-state fMRI study,” Human Brain Mapping. In press. View at Publisher · View at Google Scholar
  58. V. Menon and L. Q. Uddin, “Saliency, switching, attention and control: a network model of insula function,” Brain Structure & Function, vol. 214, no. 5-6, pp. 655–667, 2010. View at Scopus
  59. W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. Yuan, W. Qin, D. Wang, T. Jiang, Y. Zhang, and C. Yu, “The salience network contributes to an individual's fluid reasoning capacity,” Behavioural Brain Research, vol. 229, no. 2, pp. 384–390, 2012.
  61. L. Bai, W. Qin, J. Tian et al., “Time-varied characteristics of acupuncture effects in fMRI studies,” Human Brain Mapping, vol. 30, no. 11, pp. 3445–3460, 2009.