About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 969476, 8 pages
http://dx.doi.org/10.1155/2012/969476
Research Article

Karyotype and DNA-Methylation Responses in Myelodysplastic Syndromes following Treatment with Traditional Chinese Formula Containing Arsenic

National Hematological Medical Center of Traditional Chinese Medicine, Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China

Received 30 July 2012; Revised 3 September 2012; Accepted 10 September 2012

Academic Editor: Shao Li

Copyright © 2012 Sun Shuzhen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Jiang, A. Dunbar, L. P. Gondek et al., “Aberrant DNA methylation is a dominant mechanism in MDS progression to AML,” Blood, vol. 113, no. 6, pp. 1315–1325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Xu, R. Ma, X. M. Hu, Y. G. Xu, X. H. Yang, H. Z. Wang, et al., “Clinical observation on qinghuang powder for treatment of 31 cases of myelodysplastic syndrome,” Zhong Yi Za Zhi, vol. 47, no. 7, pp. 514–516, 2006.
  3. S. Xu, X. M. Hu, and Y. G. Xu, “Effect of treatment for myelodysplastic syndrome by Qinghuang Powder combined with Chinese herbs for reinforcing shen and strenghening pi,” Zhong Guo Zhong Xi Yi Jie He Za Zhi, vol. 28, no. 3, pp. 216–218, 2008. View at Scopus
  4. S. Xu, R. Ma, X. M. Hu, Y. G. Xu, X. H. Yang, H. Z. Wang, et al., “Clinical observation of the treatment of myelodysplastic syndrome mainly with qinghuang powder,” Chinese Journal of Integrative Medicine, vol. 17, no. 11, pp. 834–839, 2011. View at Publisher · View at Google Scholar
  5. J. W. Vardiman, J. Thiele, D. A. Arber et al., “The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes,” Blood, vol. 114, no. 5, pp. 937–951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. D. Cheson, J. M. Bennett, H. Kantarjian et al., “Report of an international working group to standardize response criteria for myelodysplastic syndromes,” Blood, vol. 96, no. 12, pp. 3671–3674, 2000. View at Scopus
  7. A. Tefferi, G. Barosi, R. A. Mesa et al., “International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT),” Blood, vol. 108, no. 5, pp. 1497–1503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Mitelman, ISCN: An International System for Human Cytogenetic Nomenclature, S. Karger, Basel, Swizeland, 1995.
  9. T. Z. Berardini, “The Gene Ontology in 2010: extensions and refinements,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp1018, pp. D331–D335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. F. Aoki-Kinoshita and M. Kanehisa, “Gene annotation and pathway mapping in KEGG,” Methods in Molecular Biology, vol. 396, pp. 71–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kanehisa and Subramaniam, “The KEGG database,” Novartis Foundation Symposium, vol. 247, pp. 91–103, 2002. View at Scopus
  13. M. Abe, M. Ohira, A. Kaneda et al., “CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas,” Cancer Research, vol. 65, no. 3, pp. 828–834, 2005. View at Scopus
  14. E. L. Greer and Y. Shi, “Histone methylation: a dynamic mark in health, disease and inheritance,” Nature Reviews Genetics, vol. 13, no. 5, pp. 343–357, 2012.
  15. S. Kouidou, A. Malousi, and N. Maglaveras, “Methylation and repeats in silent and nonsense mutations of p53,” Mutation Research, vol. 599, no. 1-2, pp. 167–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. X. U. Feng and L. I. Xiao, “Epigenetic alterations in myelodysplastic syndromes,” Journal of Experimental Hematology, vol. 18, no. 2, pp. 531–535, 2010.
  17. Y. Zhao, J. Bo, L. P. Dou et al., “Preliminary study on difference of Id4 gene methylation in various types of myelodysplastic syndromes,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 17, no. 3, pp. 618–620, 2009.
  18. L. Yu, C. Liu, J. Vandeusen et al., “Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia,” Nature Genetics, vol. 37, no. 3, pp. 265–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Jiang, A. Dunbar, L. P. Gondek et al., “Aberrant DNA methylation is a dominant mechanism in MDS progression to AML,” Blood, vol. 113, no. 6, pp. 1315–1325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Claus, B. Hackanson, A. R. Poetsch, M. Zucknick, M. Sonnet, N. Blagitko-Dorfs, et al., “Quantitative analyses of DAPK1 methylation in AML and MDS,” International Journal of Cancer, vol. 131, no. 2, pp. E138–E142, 2012. View at Publisher · View at Google Scholar
  21. S. J. Wu, M. Yao, W. C. Chou, J. L. Tang, C. Y. Chen, B. S. Ko, et al., “Clinical implications of SOCS1 ethylation in myelodysplastic syndrome,” British Journal of Haematology, vol. 135, no. 3, pp. 317–323, 2006. View at Publisher · View at Google Scholar
  22. J. Lin, D. M. Yao, J. Qian et al., “Methylation status of fragile histidine triad (FHIT) gene and its clinical impact on prognosis of patients with myelodysplastic syndrome,” Leukemia Research, vol. 32, no. 10, pp. 1541–1545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Y. Kang, C. Wang, L. P. Dou et al., “Methylation status of ZO-1 gene in patients with myelodysplastic syndrome,” Journal of Experimental Hematology, vol. 16, no. 1, pp. 70–73, 2008. View at Scopus
  24. G. Egger, G. Liang, A. Aparicio, and P. A. Jones, “Epigenetics in human disease and prospects for epigenetic therapy,” Nature, vol. 429, no. 6990, pp. 457–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. F. Issa, V. Gharibyan, J. Cortes et al., “Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3948–3956, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. J. Issa, H. M. Kantarjian, and P. Kirkpatrick, “Azacitidine,” Nature Reviews Drug Discovery, vol. 4, no. 4, pp. 275–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kantarjian, Y. Oki, G. Garcia-Manero et al., “Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia,” Blood, vol. 109, no. 1, pp. 52–57, 2007. View at Publisher · View at Google Scholar · View at Scopus