About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 970635, 10 pages
http://dx.doi.org/10.1155/2012/970635
Review Article

Lipid-Regulating Effect of Traditional Chinese Medicine: Mechanisms of Actions

1Key Unit of Modulating Liver to Treat Hyperlipidemia of SATCM, State Administration of Traditional Chinese Medicine (SATCM) Level 3 Lab of Lipid Metabolism, Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
2Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China

Received 27 October 2011; Accepted 8 February 2012

Academic Editor: Keji Chen

Copyright © 2012 Wei-Jian Bei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Durrington, “Dyslipidaemia,” The Lancet, vol. 362, no. 9385, pp. 717–731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Wu, J. Bei, and J. Guo, “Chinese herbal medicine for treatment of dislipidemia,” Journal of Geriatric Cardiology, vol. 6, no. 2, pp. 119–125, 2009. View at Scopus
  3. X. G. Cao, G. Yu, X. L. Ye, et al., “Study of the inhibition of cholesterol absorption by Chinese herbal extracts,” Chinese Traditional Patent Medicine, vol. 31, no. 4, pp. 616–618, 2009.
  4. Y. Matsui, K. Kobayashi, H. Masuda et al., “Quantitative analysis of saponins in a tea-leaf extract and their antihypercholesterolemic activity,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 7, pp. 1513–1519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. J. Lin, J. H. Li, M. Yang, et al., “Treating hyperlipidemia using traditional Chinese medicine,” World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica, vol. 10, no. 1, pp. 103–106, 2008.
  6. X.-E. Li and B.-J. Guo, “Effect of protein and anthraquinone glucosides from Cassia Seed on serum lipid of hyperlipidemia rats,” China Journal of Chinese Materia Medica, vol. 27, no. 5, pp. 375–376, 2002.
  7. H. R. Davis, L. J. Zhu, L. M. Hoos et al., “Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33586–33592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Tang, Y. Ma, L. Jia, et al., “Niemann-pick C1-like 1 is required for an liver X receptor agonist to raise plasma high density lipoprotein cholesterol in mice,” Arteriosclerosis Thrombusis Vascular Biology, vol. 28, no. 3, pp. 448–454, 2008.
  9. H. Wittenburg and M. C. Carey, “Biliary cholesterol secretion by the twinned sterol half-transporters ABCG5 and ABCG8,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 605–609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ge, J. Wang, W. Qi et al., “The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1,” Cell Metabolism, vol. 7, no. 6, pp. 508–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Lin, M. A. Vermeer, and E. A. Trautwein, “Triterpenic acids present in hawthorn lower plasma cholesterol by inhibiting intestinal ACAT activity in hamsters,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 801272, 9 pages, 2011. View at Publisher · View at Google Scholar
  12. M. C. Lin, E. J. Wang, C. Lee et al., “Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine,” Journal of Nutrition, vol. 132, no. 6, pp. 1165–1168, 2002. View at Scopus
  13. W. Chang, H. Wang, H. F. Yin, Q. X. Zhou, and J. X. Yang, “Effects of berberine on cholesterol metabolism and Insig-2 gene expression of hyperlipidemic rats,” Chinese Pharmacological Bulletin, vol. 25, no. 1, pp. 85–88, 2009. View at Scopus
  14. J. Li, L. Yu, N. Li, and H. Wang, “Astragalus mongholicus and Angelica sinensis compound alleviates nephrotic hyperlipidemia in rats,” Chinese Medical Journal, vol. 113, no. 4, pp. 310–314, 2000. View at Scopus
  15. R. Gebhardt, “Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 3, pp. 1122–1128, 1998. View at Scopus
  16. J. Yi, L. Xiaohui, L. Ya, and Z. Haigang, “Atherosclerosis lesion is accelerated by persistent systemic inflammation but attenuated by saponins from Panax Notoginseng in rabbits,” Journal of Medical Colleges of PLA, vol. 23, no. 1, pp. 38–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. P. Xiao, R. Zhang, and Y. H. Sun, “Enhancement of inhibitory activity of green tea extract on fatty acid synthase by hydrogen ion,” Chinese Journal of Biochemistry and Molecular Biology, vol. 22, no. 3, pp. 234–238, 2006.
  18. X. Wang, K. S. Song, Q. X. Guo, and W. X. Tian, “The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase,” Biochemical Pharmacology, vol. 66, no. 10, pp. 2039–2047, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Mead, S. A. Irvine, and D. P. Ramji, “Lipoprotein lipase: structure, function, regulation, and role in disease,” Journal of Molecular Medicine, vol. 80, no. 12, pp. 753–769, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Perret, L. Mabile, L. Martinez, F. Tercé, R. Barbaras, and X. Collet, “Hepatic lipase: structure/function relationship, synthesis, and regulation,” Journal of Lipid Research, vol. 43, no. 8, pp. 1163–1169, 2002. View at Scopus
  21. T. Nakamura and K. Kugiyama, “Triglycerides and remnant particles as risk factors for coronary artery disease,” Current Atherosclerosis Reports, vol. 8, no. 2, pp. 107–110, 2006. View at Scopus
  22. N. Niho, M. Mutoh, M. Takahashi, K. Tsutsumi, T. Sugimura, and K. Wakabayashi, “Concurrent suppression of hyperlipidemia and intestinal polyp formation by NO-1886, increasing lipoprotein lipase activity in Min mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2970–2974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Y. Gao and S. M. Chen, “Effect of berberine on the expression of oxLDL, LPL in alveolar and peritoneal macrophages in diabetic rats,” Chinese Journal of Cardiovascular Medicine, vol. 13, pp. 277–279, 2008.
  24. Z. Zhang, W. K. K. Ho, Y. Huang, and Z. Y. Chen, “Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7α-hydroxylase and acyl CoA: cholesterol acyltransferase,” Food Research International, vol. 35, no. 9, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Manjunatha and K. Srinivasan, “Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats,” Lipids, vol. 42, no. 12, pp. 1133–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Jang, M. S. Choi, U. J. Jung et al., “Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters,” Metabolism, vol. 57, no. 11, pp. 1576–1583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. E. McGovern, J. Zhang, J. Tang et al., “Fermented beverages of pre- and proto-historic China,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17593–17598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. S. Kwak, J. S. Kyung, J. S. Kim, J. Y. Cho, and M. H. Rhee, “Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng,” Biological and Pharmaceutical Bulletin, vol. 33, no. 3, pp. 468–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Zambon, S. S. Deeb, P. Pauletto, G. Crepaldi, and J. D. Brunzell, “Hepatic lipase: a marker for cardiovascular disease risk and response to therapy,” Current Opinion in Lipidology, vol. 14, no. 2, pp. 179–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Jansen, A. J. M. Verhoeven, and E. J. G. Sijbrands, “Hepatic lipase: a pro- or anti-atherogenic protein?” Journal of Lipid Research, vol. 43, no. 9, pp. 1352–1362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. G. Li, W. J. Qu, S. Q. Wei, et al., “Effect of tribu saponin from Tribulus terrestris on the lipoprotein lipase and (hepatic) lipase activity in lipid metabolic disorder mice,” Chinese Traditional Patent Medicine, vol. 29, no. 6, pp. 808–811, 2007.
  32. J. Guo, W. J. Bei, C. P. Tang, et al., “The effect of fufang zhenshu tiaozhi extract on hepatic lipase in diet-induced hyperlipidemic rats,” Zhong Yao Cai, vol. 32, pp. 582–585, 2009.
  33. T. Mizutani, S. Inatomi, A. Inazu, and E. Kawahara, “Hypolipidemic effect of Pleurotus eryngii extract in fat-loaded mice,” Journal of Nutritional Science and Vitaminology, vol. 56, no. 1, pp. 48–53, 2010. View at Scopus
  34. J. E. Shin, J. H. Myung, and D. H. Kim, “3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase,” Biological and Pharmaceutical Bulletin, vol. 26, no. 6, pp. 854–857, 2003. View at Scopus
  35. W. Xie, W. Wang, H. Su, D. Xing, G. Cai, and L. Du, “Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins,” Journal of Pharmacological Sciences, vol. 103, no. 3, pp. 267–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Kong, J. Wei, P. Abidi et al., “Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins,” Nature Medicine, vol. 10, no. 12, pp. 1344–1351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. W. N. Pan, S. K. Wang, and Z. Z. Wang, “Hydrochloric effect on Berberine effects on human liver cell line Bel-7402 expression of LDLR,” Journal of Nanjing Medical University, vol. 25, no. 12, p. 865, 2005.
  38. P. Abidi, Y. Zhou, J. D. Jiang, and J. Liu, “Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2170–2176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. X. H. Lin, W. R. Xu, P. Liu, et al., “The hyperlipidemic study of dihydrotanshinone I,” Zhong Cao Yao, vol. 39, pp. 1378–1380, 2008.
  40. J. Xue, M. L. Xie, Z. L. Guo, et al., “Effects of serum-drug of Radix Salviae Miltiorrhizae and Fructus Crataegi extracts on cholesterolmetabolism,” Zhong Cao Yao, vol. 38, no. 1, pp. 73–77, 2007.
  41. W. Ji and B. Q. Gong, “Hypolipidemic activity and mechanism of purified herbal extract of Salvia miltiorrhiza in hyperlipidemic rats,” Journal of Ethnopharmacology, vol. 119, no. 2, pp. 291–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. V. Vijayakumar, V. Pandey, G. C. Mishra, and M. K. Bhat, “Hypolipidemic effect of fenugreek seeds is mediated through inhibition of fat accumulation and upregulation of LDL receptor,” Obesity, vol. 18, no. 4, pp. 667–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. H. W. Huang, V. H. Tran, B. D. Roufogalis, and Y. Li, “Gypenoside XLIX, a naturally occurring PPAR-α activator, inhibits cytokine-induced vascular cell adhesion molecule-1 expression and activity in human endothelial cells,” European Journal of Pharmacology, vol. 565, no. 1-3, pp. 158–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. T. P. Burris, C. Montrose, K. A. Houck et al., “The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand,” Molecular Pharmacology, vol. 67, no. 3, pp. 948–954, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Yoon, H. Lee, S. Jeong et al., “Peroxisome proliferator-activated receptor is involved in the regulation of lipid metabolism by ginseng,” British Journal of Pharmacology, vol. 138, no. 7, pp. 1295–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Garcia-Diez, V. Garcia-Mediavilla, J. E. Bayon, and J. Gonzalez-Gallego, “Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats,” Journal of Nutrition, vol. 126, no. 7, pp. 1766–1771, 1996. View at Scopus
  47. M. Vergara-Jimenez, K. Conde, S. K. Erickson, and M. L. Fernandez, “Hypolipidemic mechanisms of pectin and psyllium in guinea pigs fed high fat-sucrose diets: alterations on hepatic cholesterol metabolism,” Journal of Lipid Research, vol. 39, no. 7, pp. 1455–1465, 1998. View at Scopus
  48. A. L. Romero, K. L. West, T. Zern, and M. L. Fernandez, “The seeds from Plantago ovata lower plasma lipids by altering hepatic and bile acid metabolism in guinea pigs,” Journal of Nutrition, vol. 132, no. 6, pp. 1194–1198, 2002. View at Scopus
  49. J. Guo, W. Bei, Y. Hu et al., “A new TCM formula FTZ lowers serum cholesterol by regulating HMG-CoA reductase and CYP7A1 in hyperlipidemic rats,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 299–307, 2011. View at Publisher · View at Google Scholar
  50. L. Y. Shi, M. Tian, W. Chang, Y. Yuan, and Q. X. Zhou, “Effect of Berberine on the expression of lipid metabolism-associated gene PPARα and CPTIA,” Chinese Pharmacological Bulletin, vol. 24, no. 11, pp. 1461–1464, 2008. View at Scopus
  51. D. Gao, Q. Li, Y. Li et al., “Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 11, pp. 1076–1083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. C. H. Park, N. Yamabe, J. S. Noh, K. S. Kang, T. Tanaka, and T. Yokozawa, “The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice,” Biological and Pharmaceutical Bulletin, vol. 32, no. 10, pp. 1734–1740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Chawla, E. Saez, and R. M. Evans, “Don't know much bile-ology,” Cell, vol. 103, no. 1, pp. 1–4, 2000. View at Scopus
  54. J. Y. L. Chiang, “Bile acids: regulation of synthesis,” Journal of Lipid Research, vol. 50, no. 10, pp. 1955–1966, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Staels and J. C. Fruchart, “Therapeutic roles of peroxisome proliferator-activated receptor agonists,” Diabetes, vol. 54, no. 8, pp. 2460–2470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. Brown and J. L. Goldstein, “The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor,” Cell, vol. 89, no. 3, pp. 331–340, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. J. D. Horton, J. L. Goldstein, and M. S. Brown, “SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver,” Journal of Clinical Investigation, vol. 109, no. 9, pp. 1125–1131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Edwards, H. R. Kast, and A. M. Anisfeld, “BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis,” Journal of Lipid Research, vol. 43, no. 1, pp. 2–12, 2002. View at Scopus
  60. R. Raghow, C. Yellaturu, X. Deng, E. A. Park, and M. B. Elam, “SREBPs: the crossroads of physiological and pathological lipid homeostasis,” Trends in Endocrinology and Metabolism, vol. 19, no. 2, pp. 65–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. J. J. Repa, G. Liang, J. Ou et al., “Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ,” Genes and Development, vol. 14, no. 22, pp. 2819–2830, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. S. B. Joseph, B. A. Laffitte, P. H. Patel et al., “Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors,” Journal of Biological Chemistry, vol. 277, no. 13, pp. 11019–11025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. N. L. Urizar, A. B. Liverman, D. T. Dodds et al., “A natural product that lowers cholesterol as an antagonist ligand for FXR,” Science, vol. 296, no. 5573, pp. 1703–1706, 2002. View at Publisher · View at Google Scholar · View at Scopus