About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 978127, 9 pages
http://dx.doi.org/10.1155/2012/978127
Research Article

Cardioprotective Effects of Qishenyiqi Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin-Converting Enzyme 2

1Beijing University of Chinese Medicine, Bei San Huan Dong Lu 11, Chao Yang District, Beijing 100029, China
2State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 100850, China

Received 24 July 2012; Revised 15 October 2012; Accepted 22 October 2012

Academic Editor: Ching Liang Hsieh

Copyright © 2012 Yong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. He, D. Gu, X. Wu et al., “Major causes of death among men and women in China,” The New England Journal of Medicine, vol. 353, no. 11, pp. 1124–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Hong, Y. Wang, J. Lou, Q. Liu, H. Qu, and Y. Cheng, “Analysis of myocardial proteomic alteration after Qishenyiqi formula treatment in acute infarcted rat hearts,” Zhongguo Zhongyao Zazhi, vol. 34, no. 8, pp. 1018–1021, 2009. View at Scopus
  3. G. H. Dai, B. L. Zhang, and Z. X. Guo, “Application of central randomized system in project of clinical trial for secondary prevention of myocardial infarction by Qishen Yiqi Drop Pill,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 27, no. 7, pp. 653–656, 2007. View at Scopus
  4. L. Yang, Q. Qi, Y. Ke-xu, et al., “Effects of Yixin Jiedu Decoction on hemodynamic in Ameroid narrow ring caused,” Chinese Journal of Traditional Chinese Medicine, no. 05, pp. 1280–1282, 2012.
  5. Y. Wang, Z. Liu, C. Li et al., “Drug target prediction based on the herbs components: the study on the multitargets pharmacological mechanism of Qishenkeli acting on the coronary heart disease,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 698531, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Basile and P. P. Toth, “Angiotensin receptor blockers: role in hypertension management, cardiovascular risk reduction, and nephropathy,” Southern Medical Journal, vol. 102, no. 10, supplement, pp. S1–S12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Berl, “Renal protection by inhibition of the renin-angiotensin-aldosterone system,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 10, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. M. Pinto, B. G. J. L. De Smet, W. H. Van Gilst et al., “Selective and time related activation of the cardiac renin-angiotensin system after experimental heart failure: relation to ventricular function and morphology,” Cardiovascular Research, vol. 27, no. 11, pp. 1933–1938, 1993. View at Scopus
  9. M. De Gasparo, K. J. Catt, T. Inagami, J. W. Wright, and T. Unger, “International union of pharmacology. XXIII. The angiotensin II receptors,” Pharmacological Reviews, vol. 52, no. 3, pp. 415–472, 2000. View at Scopus
  10. S. Billet, F. Aguilar, C. Baudry, and E. Clauser, “Role of angiotensin II AT1 receptor activation in cardiovascular diseases,” Kidney International, vol. 74, no. 11, pp. 1379–1384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. X. Zhao, H. Q. Yin, Q. T. Yu et al., “ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction,” Human Gene Therapy, vol. 21, no. 11, pp. 1545–1554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Pfeffer, M. A. Pfeffer, and E. Braunwald, “Influence of chronic captopril therapy on the infarcted left ventricle of the rat,” Circulation Research, vol. 57, no. 1, pp. 84–95, 1985. View at Scopus
  13. M. A. Pfeffer, E. Braunwald, L. A. Moye et al., “Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction—Results of the survival and ventricular enlargement trial,” The New England Journal of Medicine, vol. 327, no. 10, pp. 669–677, 1992. View at Scopus
  14. B. Greenberg, M. A. Quinones, C. Koilpillai et al., “Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction: results of the SOLVD echocardiography substudy,” Circulation, vol. 91, no. 10, pp. 2573–2581, 1995. View at Scopus
  15. R. Willenheimer, B. Dahlöf, E. Rydberg, and L. Erhardt, “AT1-receptor blockers in hypertension and heart failure: clinical experience and future directions,” European Heart Journal, vol. 20, no. 14, pp. 997–1008, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Barbe, J. B. Su, T. T. Guyene, B. Crozatier, J. Ménard, and L. Hittinger, “Bradykinin pathway is involved in acute hemodynamic effects of enalaprilat in dogs with heart failure,” American Journal of Physiology, vol. 270, no. 6, pp. H1985–H1992, 1996. View at Scopus
  17. M. F. Rousseau, M. A. Konstam, C. R. Benedict et al., “Progression of left ventricular dysfunction secondary to coronary artery disease, sustained neurohormonal activation and effects of ibopamine therapy during long-term therapy with angiotensin-converting enzyme inhibitor,” American Journal of Cardiology, vol. 73, no. 7, pp. 488–493, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Kassiri, J. Zhong, D. Guo et al., “Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction,” Circulation, vol. 2, no. 5, pp. 446–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. K. Mehta and K. K. Griendling, “Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system,” American Journal of Physiology, vol. 292, no. 1, pp. C82–C97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Qi, H. Li, V. Shenoy et al., “Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury,” Experimental Physiology, vol. 97, no. 1, pp. 89–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Matsubara, “Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases,” Circulation Research, vol. 83, no. 12, pp. 1182–1191, 1998. View at Scopus
  22. A. Chatterjee, S. A. Mir, D. Dutta, A. Mitra, K. Pathak, and S. Sarkar, “Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy,” Journal of Cellular Physiology, vol. 226, no. 10, pp. 2543–2554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. W. H. W. Tang, A. C. Parameswaran, A. P. Maroo, and G. S. Francis, “Aldosterone receptor antagonists in the medical management of chronic heart failure,” Mayo Clinic Proceedings, vol. 80, no. 12, pp. 1623–1630, 2005. View at Scopus
  24. T. Hase, H. Tanaka, Y. Suzuki, S. Nakagawa, and H. Kitano, “Structure of protein interaction networks and their implications on drug design,” PLoS Computational Biology, vol. 5, no. 10, Article ID e1000550, 2009. View at Publisher · View at Google Scholar · View at Scopus