About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 983801, 13 pages
http://dx.doi.org/10.1155/2012/983801
Research Article

In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction

1Institute of First Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, China
2Department of Liver Disease, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210029, China
3Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Jiangsu, Nanjing 210028, China
4Institute of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210046, China

Received 5 August 2012; Revised 31 October 2012; Accepted 31 October 2012

Academic Editor: Annie Shirwaikar

Copyright © 2012 Lina Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Camilleri, “Management of the irritable bowel syndrome,” Gastroenterology, vol. 120, no. 3, pp. 652–668, 2001. View at Scopus
  2. F. Mearin, A. Perelló, A. Balboa et al., “Pathogenic mechanisms of postinfectious functional gastrointestinal disorders: results 3 years after gastroenteritis,” Scandinavian Journal of Gastroenterology, vol. 44, no. 10, pp. 1173–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Gwee, S. M. Collins, N. W. Read et al., “Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome,” Gut, vol. 52, no. 4, pp. 523–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. S. Chadwick, W. Chen, D. Shu et al., “Activation of the mucosal immune system in irritable bowel syndrome,” Gastroenterology, vol. 122, no. 7, pp. 1778–1783, 2002. View at Scopus
  5. N. Cenac, C. N. Andrews, M. Holzhausen et al., “Role for protease activity in visceral pain in irritable bowel syndrome,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 636–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Gecse, R. Róka, L. Ferrier et al., “Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity,” Gut, vol. 57, no. 5, pp. 591–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Ferrier, L. Mazelin, N. Cenac et al., “Stress-induced disruption of colonic epithelial barrier: role of interferon-γ and myosin light chain kinase in mice,” Gastroenterology, vol. 125, no. 3, pp. 795–804, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. T. Capaldo and A. Nusrat, “Cytokine regulation of tight junctions,” Biochimica et Biophysica Acta, vol. 1788, no. 4, pp. 864–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Piche, G. Barbara, P. Aubert et al., “Impaired Intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators,” Gut, vol. 58, no. 2, pp. 196–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Dunlop, J. Hebden, E. Campbell et al., “Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes,” American Journal of Gastroenterology, vol. 101, no. 6, pp. 1288–1294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Spiller, D. Jenkins, J. P. Thornley et al., “Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome,” Gut, vol. 47, no. 6, pp. 804–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. W. M. Kong, J. Gong, L. Dong, and M. X. Chen, “Changes in tight junction of intestinal mucosa in patients with irritable bowel syndrome: a study with tracing electron microscope,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 27, no. 8, pp. 1167–1172, 2007. View at Scopus
  13. W. M. Kong, J. Gong, L. Dong, and J. R. Xu, “Changes of tight junction claudin-1,-3,-4 protein expression in the intestinal mucosa in patients with irritable bowel syndrome,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 27, no. 9, pp. 1345–1347, 2007. View at Scopus
  14. F. Barreau, L. Ferrier, J. Fioramonti, and L. Bueno, “Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats,” Gut, vol. 53, no. 4, pp. 501–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Winston, M. Shenoy, D. Medley, A. Naniwadekar, and P. J. Pasricha, “The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats,” Gastroenterology, vol. 132, no. 2, pp. 615–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. D. Al-Chaer, “A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development,” Gastroenterology, vol. 119, no. 5, pp. 1276–1285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. Bradley, R. D. Christensen, and G. Rothstein, “Cellular and extracellular myeloperoxidase in pyogenic inflammation,” Blood, vol. 60, no. 3, pp. 618–622, 1982. View at Scopus
  18. J. Keohane, C. O'Mahony, L. O'Mahony, S. O'Mahony, E. M. Quigley, and F. Shanahan, “Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation?” The American Journal of Gastroenterology, vol. 105, no. 8, pp. 1788–1795, 2010. View at Scopus
  19. T. Y. Ma, N. T. Hoa, D. D. Tran et al., “Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase,” American Journal of Physiology, vol. 279, no. 5, pp. G875–G885, 2000. View at Scopus
  20. T. Y. Ma, D. Nguyen, V. Bui, H. Nguyen, and N. Hoa, “Ethanol modulation of intestinal epithelial tight junction barrier,” American Journal of Physiology, vol. 276, no. 4, pp. G965–G974, 1999. View at Scopus
  21. S. Basuroy, A. Seth, B. Elias, A. P. Naren, and R. Rao, “MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide,” Biochemical Journal, vol. 393, no. 1, pp. 69–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Söderholm, D. A. Yates, M. G. Gareau, P. C. Yang, G. MacQueen, and M. H. Perdue, “Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress,” American Journal of Physiology, vol. 283, no. 6, pp. G1257–G1263, 2002. View at Scopus
  23. A. Rosztóczy, J. Fioramonti, K. Jármay, F. Barreau, T. Wittmann, and L. Buéno, “Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat,” Neurogastroenterology and Motility, vol. 15, no. 6, pp. 679–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Ando, R. F. Brown, R. D. Berg, and A. J. Dunn, “Bacterial translocation can increase plasma corticosterone and brain catecholamine and indoleamine metabolism,” American Journal of Physiology, vol. 279, no. 6, pp. R2164–R2172, 2000. View at Scopus
  25. E. M. M. Quigley, “Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome: biological markers or epiphenomenon,” Gastroenterology Clinics of North America, vol. 34, no. 2, pp. 221–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Furuse, “Molecular basis of the core structure of tight junctions,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 1, p. a002907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Ulluwishewa, R. C. Anderson, W. C. McNabb, P. J. Moughan, J. M. Wells, and N. C. Roy, “Regulation of tight junction permeability by intestinal bacteria and dietary components,” Journal of Nutrition, vol. 141, no. 5, pp. 769–776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Suzuki, B. C. Elias, A. Seth et al., “PKCη regulates occludin phosphorylation and epithelial tight junction integrity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 61–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Morgado-Díaz and W. De Souza, “Evidence that increased tyrosine phosphorylation causes disassembly of adherens junctions but does not perturb paracellular permeability in Caco-2 cells,” Tissue and Cell, vol. 33, no. 5, pp. 500–513, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Sakakibara, M. Furuse, M. Saitou, Y. Ando-Akatsuka, and S. Tsukita, “Possible involvement of phosphorylation of occludin in tight junction formation,” Journal of Cell Biology, vol. 137, no. 6, pp. 1393–1401, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Fujibe, H. Chiba, T. Kojima et al., “Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions,” Experimental Cell Research, vol. 295, no. 1, pp. 36–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Zareie, D. M. McKay, G. G. Kovarik, and M. H. Perdue, “Monocyte/macrophages evoke epithelial dysfunction: indirect role of tumor necrosis factor-α,” American Journal of Physiology, vol. 275, no. 4, pp. C932–C939, 1998. View at Scopus
  33. A. Mashukova, F. A. Wald, and P. J. Salas, “Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism,” Molecular and Cellular Biology, vol. 31, no. 4, pp. 756–765, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. W. V. Graham, F. Wang, D. R. Clayburgh et al., “Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events: characterization of the human long myosin light chain kinase promoter,” Journal of Biological Chemistry, vol. 281, no. 36, pp. 26205–26215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Wang, W. V. Graham, Y. Wang, E. D. Witkowski, B. T. Schwarz, and J. R. Turner, “Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression,” American Journal of Pathology, vol. 166, no. 2, pp. 409–419, 2005. View at Scopus
  36. P. L. Sappington, X. Han, R. Yang, R. L. Delude, and M. P. Fink, “Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated caco-2 enterocytic monolayers,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 1, pp. 464–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Han, M. P. Fink, and R. L. Delude, “Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells,” Shock, vol. 19, no. 3, pp. 229–237, 2003. View at Scopus
  38. C. Dai, S. Guandalini, D.-H. Zhao, and M. Jiang, “Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: a possible action through nitric oxide pathway and enhance barrier function,” Molecular and Cellular Biochemistry, vol. 361, no. 1-2, pp. 43–53, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. A. A. Zyrek, C. Cichon, S. Helms, C. Enders, U. Sonnenborn, and M. A. Schmidt, “Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair,” Cellular Microbiology, vol. 9, no. 3, pp. 804–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. C. Anderson, A. L. Cookson, W. C. McNabb et al., “Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation,” BMC Microbiology, vol. 10, article no. 316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Putaala, T. Salusjärvi, M. Nordström et al., “Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression,” Research in Microbiology, vol. 159, no. 9-10, pp. 692–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Resta-Lenert and K. E. Barrett, “Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells,” Gastroenterology, vol. 130, no. 3, pp. 731–746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Quettier-Deleu, B. Gressier, J. Vasseur et al., “Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour,” Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 35–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. L. Da Silva Porto, J. A. N. Laranjinha, and V. A. P. De Freitas, “Antioxidant protection of low density lipoprotein by procyanidins: Structure/activity relationships,” Biochemical Pharmacology, vol. 66, no. 6, pp. 947–954, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. T. K. Mao, J. Van De Water, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells,” Journal of Medicinal Food, vol. 5, no. 1, pp. 17–22, 2002. View at Scopus
  46. F. Takano, T. Takata, A. Yoshihara, Y. Nakamura, Y. Arima, and T. Ohta, “Aqueous extract of peanut skin and its main constituent procyanidin A1 suppress serum IgE and IgG1 levels in mice-immunized with ovalbumin,” Biological and Pharmaceutical Bulletin, vol. 30, no. 5, pp. 922–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. L. Watson, S. Ansari, H. Cameron, A. Wang, M. Akhtar, and D. M. McKay, “Green tea polyphenol (−)-epigallocatechin gallate blocks epithelial barrier dysfunction provoked by IFN-γ but not by IL-4,” American Journal of Physiology, vol. 287, no. 5, pp. G954–G961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Obara, K. Ukai, and T. Ishikawa, “Mechanism of potentiation by tea epigallocatechin of contraction in porcine coronary artery: the role of protein kinase Cdelta-mediated CPI-17 phosphorylation,” European Journal of Pharmacology, vol. 668, no. 3, pp. 414–418, 2011.
  49. T. Kaneko-Kawano, F. Takasu, H. Naoki et al., “Dynamic regulation of myosin light chain phosphorylation by Rho-kinase,” PLoS One, vol. 7, no. 6, Article ID 39269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Ihme, H. Kiesewetter, F. Jung et al., “Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo controlled clinical trial,” European Journal of Clinical Pharmacology, vol. 50, no. 6, pp. 443–447, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. D. G. Santana, C. A. Santos, A. D. C. Santos et al., “Beneficial effects of the ethanol extract of Caesalpinia pyramidalis on the inflammatory response and abdominal hyperalgesia in rats with acute pancreatitis,” Journal of Ethnopharmacology, vol. 142, no. 2, pp. 445–455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Schmitz, M. Fromm, C. J. Bentzel et al., “Tumor necrosis factor-alpha (TNFα) regulates the epithelial barrier in the human intestinal cell line HT-29/B6,” Journal of Cell Science, vol. 112, no. 1, pp. 137–146, 1999. View at Scopus
  53. T. Suzuki and H. Hara, “Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells,” Journal of Nutrition, vol. 139, no. 5, pp. 965–974, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Amasheh, S. Schlichter, S. Amasheh et al., “Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells,” Journal of Nutrition, vol. 138, no. 6, pp. 1067–1073, 2008. View at Scopus