About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 109105, 14 pages
http://dx.doi.org/10.1155/2013/109105
Research Article

Induction of Apoptosis by Luteolin Involving Akt Inactivation in Human 786-O Renal Cell Carcinoma Cells

1Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan
2Department of Pharmacology, School of Medicine, Chung-Shan Medical University, Taichung 402, Taiwan
3Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
4Center for General Education, Tunghai University, Taichung 407, Taiwan
5Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
6Graduate School of Nursing, Hung-Kuang University, Taichung 433, Taiwan

Received 26 August 2012; Revised 23 December 2012; Accepted 2 January 2013

Academic Editor: Hong Q. Zhang

Copyright © 2013 Yen-Chuan Ou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Birt, S. Hendrich, and W. Wang, “Dietary agents in cancer prevention: flavonoids and isoflavonoids,” Pharmacology and Therapeutics, vol. 90, no. 2-3, pp. 157–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Li, H. Fang, and W. Xu, “Recent advance in the research of flavonoids as anticancer agents,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 7, pp. 663–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ramos, “Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention,” The Journal of Nutritional Biochemistry, vol. 18, no. 7, pp. 427–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. Lee, C. J. Wang, H. C. Kuo, F. P. Chou, L. F. Jean, and T. H. Tseng, “Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK,” Toxicology and Applied Pharmacology, vol. 203, no. 2, pp. 124–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. C. Cheng, T. C. Huang, C. S. Lai et al., “Pyrrolidine dithiocarbamate inhibition of luteolin-induced apoptosis through up-regulated phosphorylation of akt and caspase-9 in human leukemia HL-60 cells,” Journal of Agricultural and Food Chemistry, vol. 54, no. 12, pp. 4215–4221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Ong, J. Zhou, C. N. Ong, and H. M. Shen, “Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway,” Cancer Letters, vol. 298, no. 2, pp. 167–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Y. Choi, J. H. Choi, H. Yoon et al., “Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells,” European Journal of Pharmacology, vol. 668, no. 1-2, pp. 115–126, 2011. View at Publisher · View at Google Scholar
  8. Y. S. Lin, P. H. Tsai, C. C. Kandaswami et al., “Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells,” Cancer Science, vol. 102, no. 10, pp. 1829–1839, 2011. View at Publisher · View at Google Scholar
  9. X. Tang, H. Wang, L. Fan et al., “Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs,” Free Radical Biology and Medicine, vol. 50, no. 11, pp. 1599–1609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Bai, X. Xu, Q. Wang et al., “A superoxide-mediated mitogen-activated protein kinase phosphatase-1 degradation and c-Jun NH2-terminal kinase activation pathway for luteolin-induced lung cancer cytotoxicity,” Molecular Pharmacology, vol. 81, no. 4, pp. 549–555, 2012. View at Publisher · View at Google Scholar
  11. P. S. Rao, A. Satelli, M. Moridani, M. Jenkins, and U. S. Rao, “Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function: involvement of cell line-specific apoptotic mechanisms,” International Journal of Cancer, vol. 130, no. 11, pp. 2703–2714, 2012. View at Publisher · View at Google Scholar
  12. C. Coppin, F. Porzsolt, A. Awa, J. Kumpf, A. Coldman, and T. Wilt, “Immunotherapy for advanced renal cell cancer,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001425, 2005. View at Scopus
  13. B. I. Rini, S. C. Campbell, and B. Escudier, “Renal cell carcinoma,” The Lancet, vol. 373, no. 9669, pp. 1119–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Motzer and R. M. Bukowski, “Targeted therapy for metastatic renal cell carcinoma,” Journal of Clinical Oncology, vol. 24, no. 35, pp. 5601–5608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Hudes, M. Carducci, P. Tomczak et al., “Global ARCC Trial. Temsirolimus, interferon alpha, or both for advanced renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, no. 22, pp. 2271–2281, 2007. View at Publisher · View at Google Scholar
  16. J. M. G. Larkin, T. R. Ferguson, L. M. Pickering et al., “A phase I/II trial of sorafenib and infliximab in advanced renal cell carcinoma,” British Journal of Cancer, vol. 103, no. 8, pp. 1149–1153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Gore, S. Hariharan, C. Porta et al., “Sunitinib in metastatic renal cell carcinoma patients with brain metastases,” Cancer, vol. 117, no. 3, pp. 501–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Huijts, S. J. Santegoets, A. J. van den Eertwegh et al., “Phase I-II study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell cancer,” BMC Cancer, vol. 11, article 505, 2011. View at Publisher · View at Google Scholar
  19. D. Roulin, L. Waselle, A. Dormond-Meuwly, M. Dufour, N. Demartines, and O. Dormond, “Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib,” Molecular Cancer, vol. 10, article 90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg, “Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis,” Science, vol. 270, no. 5240, pp. 1326–1331, 1995. View at Scopus
  21. T. P. Garrington and G. L. Johnson, “Organization and regulation of mitogen-activated protein kinase signaling pathways,” Current Opinion in Cell Biology, vol. 11, no. 2, pp. 211–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Zhang, D. Luo, R. Miao et al., “Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis,” Oncogene, vol. 24, no. 24, pp. 3954–3963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Takano, H. Iwata, Y. Yano et al., “Up-regulation of connexin 32 gene by 5-aza-2′-deoxycytidine enhances vinblastine-induced cytotoxicity in human renal carcinoma cells via the activation of JNK signalling,” Biochemical Pharmacology, vol. 80, no. 4, pp. 463–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Fujita, T. Yagami, M. Fujio et al., “Cytotoxicity of troglitazone through PPARγ-independent pathway and p38 MAPK pathway in renal cell carcinoma,” Cancer Letters, vol. 312, no. 2, pp. 219–227, 2011. View at Publisher · View at Google Scholar
  25. Y. C. Ou, C. R. Yang, C. L. Cheng, S. L. Raung, Y. Y. Hung, and C. J. Chen, “Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT,” European Journal of Pharmacology, vol. 563, no. 1–3, pp. 49–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Y. Chang, C. C. Shen, H. L. Su, and C. J. Chen, “Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation,” Journal of Neurooncology, vol. 105, no. 3, pp. 507–522, 2011. View at Publisher · View at Google Scholar
  27. A. H. Kim, G. Khursigara, X. Sun, T. F. Franke, and M. V. Chao, “Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1,” Molecular and Cellular Biology, vol. 21, no. 3, pp. 893–901, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. G. Choi, J. Lee, J. Ha, and S. S. Kim, “Apoptosis signal-regulating kinase 1 is an intracellular inducer of p38 MAPK-mediated myogenic signalling in cardiac myoblasts,” Biochimica et Biophysica Acta, vol. 1813, no. 8, pp. 1412–1421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Beck, J. Verrax, T. Gonze et al., “Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death,” Biochemical Pharmacology, vol. 77, no. 3, pp. 375–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. C. Shen, L. Y. Yang, H. Y. Lin, C. Y. Wu, T. H. Su, and Y. C. Chen, “Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation,” Toxicology and Applied Pharmacology, vol. 229, no. 2, pp. 239–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Ichijo, E. Nishida, K. Irie et al., “Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways,” Science, vol. 275, no. 5296, pp. 90–94, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Matsukawa, A. Matsuzawa, K. Takeda, and H. Ichijo, “The ASK1-MAP kinase cascades in mammalian stress response,” Journal of Biochemistry, vol. 136, no. 3, pp. 261–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Hassan, O. Feyen, and E. Grinstein, “Fas-induced apoptosis of renal cell carcinoma is mediated by apoptosis signal-regulating kinase 1 via mitochondrial damage-dependent caspase-8 activation,” Cellular Oncology, vol. 31, no. 6, pp. 437–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. C. Ferriola, V. Cody, and E. Middleton, “Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships,” Biochemical Pharmacology, vol. 38, no. 10, pp. 1617–1624, 1989. View at Scopus
  35. L. Neckers, “Heat shock protein 90: the cancer chaperone,” Journal of Biosciences, vol. 32, no. 3, pp. 517–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. B. Clark, M. J. Rane, D. El Mehdi, C. J. Miller, L. R. Sachleben Jr., and E. Gozal, “Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex,” Free Radical Biology and Medicine, vol. 47, no. 10, pp. 1440–1449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Taiyab, A. S. Sreedhar, and C. M. Rao, “Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma,” Biochemical Pharmacology, vol. 78, no. 2, pp. 142–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Sourbier, V. Lindner, H. Lang et al., “The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy,” Cancer Research, vol. 66, no. 10, pp. 5130–5142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. K. Kao, Y. C. Ou, S. Y. Lin et al., “Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia,” Journal of Nutritional Biochemistry, vol. 22, no. 7, pp. 612–624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. W. Kim, H. J. Kim, Y. J. Chun, and M. Y. Kim, “Ceramide produces apoptosis through induction of p27kip1 by protein phosphatase 2A-dependent Akt dephosphorylation in PC-3 prostate cancer cells,” Journal of Toxicology and Environmental Health A, vol. 73, no. 21-22, pp. 1465–1476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. R. Hostetter, C. R. K. Loeb, F. Chu, and C. S. Craik, “Hip is a pro-survival substrate of granzyme B,” Journal of Biological Chemistry, vol. 282, no. 38, pp. 27865–27874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Chen, Y. Xia, D. Fang, D. Hawke, and Z. Lu, “Caspase-10-mediated heat shock protein 90β cleavage promotes UVB irradiation-induced cell apoptosis,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3657–3664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. V. A. Robb, M. Karbowniczek, A. J. Klein-Szanto, and E. P. Henske, “Activation of the mTOR signaling pathway in renal clear cell carcinoma,” Journal of Urology, vol. 177, no. 1, pp. 346–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. J. Motzer, B. Escudier, S. Oudard et al., “Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial,” The Lancet, vol. 372, no. 9637, pp. 449–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. C. Cho, M. B. Cohen, D. J. Panka et al., “The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma,” Clinical Cancer Research, vol. 16, no. 14, pp. 3628–3638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. X. Xu, Y. Li, P. Yue et al., “The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo,” PLoS ONE, vol. 6, no. 6, Article ID e20899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. R. Cardillo and F. Ippoliti, “Interleukin-6, interleukin-10 and heat shock protein-90 expression in renal epithelial neoplasias and surrounding normal-appearing renal parenchyma,” International Journal of Immunopathology and Pharmacology, vol. 20, no. 1, pp. 37–46, 2007. View at Scopus
  48. M. Hämäläinen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, “Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages,” Mediators of Inflammation, vol. 2007, Article ID 45673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Shimoi, H. Okada, M. Furugori et al., “Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans,” FEBS Letters, vol. 438, no. 3, pp. 220–224, 1998. View at Publisher · View at Google Scholar · View at Scopus