About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 160168, 10 pages
http://dx.doi.org/10.1155/2013/160168
Research Article

Expression Profiling and Proteomic Analysis of JIN Chinese Herbal Formula in Lung Carcinoma H460 Xenografts

1College of Basic Medicine and School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China
2Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
3School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
4Department of Pharmacology and Winship Cancer Institute, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA

Received 28 March 2013; Revised 8 July 2013; Accepted 17 July 2013

Academic Editor: Aiping Lu

Copyright © 2013 Luyu Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Y. Jiang, “Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science,” Discovery Medicine, vol. 5, no. 29, pp. 455–461, 2005.
  2. A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, “A statistical model for identifying proteins by tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 17, pp. 4646–4658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Keller and D. Shteynberg, “Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline,” Methods in Molecular Biology, vol. 694, pp. 169–189, 2011. View at Scopus
  4. P. G. A. Pedrioli, “Trans-proteomic pipeline: a pipeline for proteomic analysis,” Methods in Molecular Biology, vol. 604, pp. 213–238, 2010. View at Scopus
  5. J. G. Booth, K. E. Eilertson, P. D. B. Olinares, and H. Yu, “A bayesian mixture model for comparative spectral count data in shotgun proteomics,” Molecular and Cellular Proteomics, vol. 10, no. 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. R. Zeeberg, W. Feng, G. Wang et al., “GoMiner: a resource for biological interpretation of genomic and proteomic data,” Genome Biology, vol. 4, no. 4, p. R28, 2003. View at Scopus
  7. B. R. Zeeberg, H. Qin, S. Narasimhan et al., “High-throughput GoMiner, an “industrial-strength” integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID),” BMC Bioinformatics, vol. 6, article 168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Algar, A. Muscat, V. Dagar et al., “Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors,” PLoS ONE, vol. 4, no. 2, Article ID e4482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Park, K. Kim, E.-J. Lee et al., “Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17028–17033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Freemantle and E. Dmitrovsky, “Cyclin E transgenic mice: discovery tools for lung cancer biology, therapy, and prevention,” Cancer Prevention Research, vol. 3, no. 12, pp. 1513–1518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lemjabbar-Alaoui, V. Dasari, S. S. Sidhu et al., “Wnt and hedgehog are critical mediators of cigarette smoke-induced lung cancer,” PLoS ONE, vol. 1, no. 1, article e93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Neal and L. V. Sequist, “Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh,” Current Treatment Options in Oncology, vol. 11, no. 1-2, pp. 36–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Katoh and M. Katoh, “Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation,” Current Molecular Medicine, vol. 9, no. 7, pp. 873–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Mazieres, B. He, L. You, Z. Xu, and D. M. Jablons, “Wnt signaling in lung cancer,” Cancer Letters, vol. 222, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Lu, Z. Tan, M. Wortman, S. Lu, and Z. Dong, “Regulation of heat shock protein 70-1 expression by androgen receptor and its signaling in human prostate cancer cells,” International Journal of Oncology, vol. 36, no. 2, pp. 459–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Calderwood, M. A. Khaleque, D. B. Sawyer, and D. R. Ciocca, “Heat shock proteins in cancer: chaperones of tumorigenesis,” Trends in Biochemical Sciences, vol. 31, no. 3, pp. 164–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Eccles, A. Massey, F. I. Raynaud et al., “NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis,” Cancer Research, vol. 68, no. 8, pp. 2850–2860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tsutsumi, B. Scroggins, F. Koga et al., “A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion,” Oncogene, vol. 27, no. 17, pp. 2478–2487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Daugaard, M. Rohde, and M. Jäättelä, “The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions,” FEBS Letters, vol. 581, no. 19, pp. 3702–3710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. P. Mayer and B. Bukau, “Hsp70 chaperones: cellular functions and molecular mechanism,” Cellular and Molecular Life Sciences, vol. 62, no. 6, pp. 670–684, 2005. View at Publisher · View at Google Scholar · View at Scopus