About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 216016, 17 pages
http://dx.doi.org/10.1155/2013/216016
Review Article

From Acupuncture to Interaction between -Opioid Receptors and Na+ Channels: A Potential Pathway to Inhibit Epileptic Hyperexcitability

1The University of Texas Medical School at Houston, Houston, TX 77030, USA
2Yale University School of Medicine, New Haven, CT 06520, USA
3Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
4Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Received 24 August 2012; Revised 10 November 2012; Accepted 13 December 2012

Academic Editor: Di Zhang

Copyright © 2013 Dongman Chao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Chao and Y. Xia, “Acupuncture treatment of epilepsy,” in Current Research in Acupuncture, Y. Xia, G. Ding, and G. C. Wu, Eds., pp. 129–214, Springer, New York, Heidelberg, Dordrecht, London, USA, 2012.
  2. A. C. Errington, T. Stöhr, and G. Lees, “Voltage gated ion channels: targets for anticonvulsant drugs,” Current Topics in Medicinal Chemistry, vol. 5, no. 1, pp. 15–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kong, R. Gollub, T. Huang et al., “Acupuncture de qi, from qualitative history to quantitative measurement,” Journal of Alternative and Complementary Medicine, vol. 13, no. 10, pp. 1059–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Mao, J. T. Farrar, K. Armstrong, A. Donahue, J. Ngo, and M. A. Bowman, “De qi: Chinese acupuncture patients' experiences and beliefs regarding acupuncture needling sensation—an exploratory survey,” Acupuncture in Medicine, vol. 25, no. 4, pp. 158–165, 2007. View at Scopus
  5. NIH Consensus Development Panel on Acupuncture, “Acupuncture,” The Journal of the American Medical Association, vol. 280, no. 17, pp. 1518–1524, 1998. View at Publisher · View at Google Scholar
  6. V. Jindal, A. Ge, and P. J. Mansky, “Safety and efficacy of acupuncture in children: a review of the evidence,” Journal of Pediatric Hematology/Oncology, vol. 30, no. 6, pp. 431–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Wu, L. P. Zou, T. L. Han et al., “Randomized controlled trial of traditional Chinese medicine (acupuncture and Tuina) in cerebral palsy—part 1: any increase in seizure in integrated acupuncture and rehabilitation group versus rehabilitation group?” Journal of Alternative and Complementary Medicine, vol. 14, no. 8, pp. 1005–1009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Chao, L. L. Shen, S. Tjen-A-Looi, K. F. Pitsillides, P. Li, and J. C. Longhurst, “Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses,” American Journal of Physiology, vol. 276, no. 6, pp. H2127–H2134, 1999. View at Scopus
  9. J. S. Han, “Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies,” Trends in Neurosciences, vol. 26, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Wang, Z. N. Kain, and P. White, “Acupuncture analgesia: I. The scientific basis,” Anesthesia and Analgesia, vol. 106, no. 2, pp. 602–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wen, Y. Yang, Y. Lu, and Y. Xia, “Acupuncture-induced activation of endogenous opioid system,” in Acupuncture Therapy for Neurological Diseases: A Neurobiological View, Y. Xia, X. D. Cao, G. C. Wu, and J. S. Cheng, Eds., pp. 104–119, Springer-Tsinghua Press, Beijing, Heidelberg, London, New York, NY, USA, 2010.
  12. G. Wen, X. He, Y. Lu, and Y. Xia, “Effect of acupuncture on neurotransmitters/modulators,” in Acupuncture Therapy for Neurological Diseases: A Neurobiological View, Y. Xia, X. D. Cao, G. C. Wu, and J. S. Cheng, Eds., pp. 120–142, Springer-Tsinghua Press, Beijing, Heidelberg, London, New York, NY, USA, 2010.
  13. J. Liang and Y. Xia, “Acupuncture Modulation of central neurotransmitters,” in Current Research in Acupuncture, Y. Xia, G. Ding, and G. C. Wu, Eds., pp. 1–36, Springer, New York, NY, USA, 2012.
  14. P. Zhao, J. C. Guo, S. S. Hong, A. Bazzy-Asaad, J. S. Cheng, and Y. Xia, “Electro-acupuncture and brain protection from cerebral ischemia: the role of delta-opioid receptor,” Society for Neuroscience Abstract, vol. 28, p. 736, 2002.
  15. X. S. Tian, F. Zhou, R. Yang, Y. Xia, G. C. Wu, and J. C. Guo, “Electroacupuncture protects the brain against acute ischemic injury via up-regulation of delta-opioid receptor in rats,” Zhong Xi Yi Jie He Xue Bao, vol. 6, no. 6, pp. 632–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Kang, D. Chao, Q. Gu et al., “δ-opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation,” Cellular and Molecular Life Sciences, vol. 66, no. 21, pp. 3505–3516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Chattopadhyay, M. Mata, and D. J. Fink, “Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy,” Journal of Neuroscience, vol. 28, no. 26, pp. 6652–6658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Chao, A. Bazzy-Asaad, G. Balboni, and Y. Xia, “δ-, but not μ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia,” Journal of Cellular Physiology, vol. 212, no. 1, pp. 60–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Chao, D. F. Donnelly, Y. Feng, A. Bazzy-Asaad, and Y. Xia, “Cortical δ-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 2, pp. 356–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Chao, A. Bazzy-Asaad, G. Balboni, S. Salvadori, and Y. Xia, “Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex,” Cerebral Cortex, vol. 18, no. 9, pp. 2217–2227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Chao, G. Balboni, L. H. Lazarus, S. Salvadori, and Y. Xia, “Na+ mechanism of δ-opioid receptor induced protection from anoxic K+ leakage in the cortex,” Cellular and Molecular Life Sciences, vol. 66, no. 6, pp. 1105–1115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Chao, X. He, Y. Yang et al., “DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex,” Experimental Neurology, vol. 236, no. 2, pp. 228–239, 2012. View at Publisher · View at Google Scholar
  23. Y. Xia, M. L. Fung, J. P. O'Reilly, and G. G. Haddad, “Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels,” Molecular Brain Research, vol. 76, no. 2, pp. 211–219, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Xia, P. Zhao, J. Xue et al., “Na+ channel expression and neuronal function in the Na+/H+ exchanger 1 null mutant mouse,” Journal of Neurophysiology, vol. 89, no. 1, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. E. Stafstrom, “Persistent sodium current and its role in epilepsy,” Epilepsy Currents, vol. 7, no. 1, pp. 15–22, 2007. View at Publisher · View at Google Scholar
  26. M. Mantegazza, G. Curia, G. Biagini, D. S. Ragsdale, and M. Avoli, “Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders,” The Lancet Neurology, vol. 9, no. 4, pp. 413–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Aghakhani, A. P. Bagshaw, C. G. Bénar et al., “fMRI activation during spike and wave discharges in idiopathic generalized epilepsy,” Brain, vol. 127, no. 5, pp. 1127–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Berman, M. Negishi, M. Vestal et al., “Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures,” Epilepsia, vol. 51, no. 10, pp. 2011–2022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Moeller, H. Muhle, G. Wiegand, S. Wolff, U. Stephani, and M. Siniatchkin, “EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment,” Epilepsy and Behavior, vol. 18, no. 3, pp. 313–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Szaflarski, M. DiFrancesco, T. Hirschauer et al., “Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI,” Epilepsy and Behavior, vol. 18, no. 4, pp. 404–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Zhang, G. Lu, Y. Zhong et al., “fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis,” Human Brain Mapping, vol. 31, no. 12, pp. 1851–1861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Bragin, C. L. Wilson, and J. Engel Jr., “Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis,” Epilepsia, vol. 41, supplement 6, pp. S144–S152, 2000. View at Scopus
  33. P. A. Williams, P. Dou, and F. E. Dudek, “Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia,” Epilepsia, vol. 45, no. 10, pp. 1210–1218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Morgan and I. Soltesz, “Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6179–6184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. P. Bean, “The action potential in mammalian central neurons,” Nature Reviews Neuroscience, vol. 8, no. 6, pp. 451–465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Y. Chen, G. P. Chen, and X. Feng, “Observation of immediate effect of acupuncture on electroencephalograms in epileptic patients,” Journal of Traditional Chinese Medicine, vol. 3, no. 2, pp. 121–124, 1983. View at Scopus
  37. Z. Y. Shi, B. T. Gong, Y. W. Jia, and Z. X. Huo, “The efficacy of electro-acupuncture on 98 cases of epilepsy,” Journal of Traditional Chinese Medicine, vol. 7, no. 1, pp. 21–22, 1987. View at Scopus
  38. J. Yang, “Treatment of status epilepticus with acupuncture,” Journal of Traditional Chinese Medicine, vol. 10, no. 2, pp. 101–102, 1990. View at Scopus
  39. T. Wen, “Treatment of 78 cases of epilepsy in narcotic abstaining,” Zhongguo Zhen Jiu, vol. 20, no. 4, p. 226, 2000.
  40. Y. J. Deng, J. J. Wang, Y. P. Lin, W. Y. Liu, and L. H. Wang, “Clinical observation on treatment of epilepsy general tonic-clonic attack with catgut implantation at acupoint plus antiepileptic Western Medicine of small dose,” Zhongguo Zhen Jiu, vol. 21, no. 5, pp. 271–273, 2001.
  41. J. Lin, Q. P. Deng, and J. W. Zhang, “Observation on therapeutic effect of 160 cases of epilepsy treated with acupoint catgut embedding therapy,” Zhongguo Zhen Jiu, vol. 21, no. 11, pp. 653–654, 2001.
  42. J. C. Wang, “One hundred and twenty cases of epilepsy treated by three acupoints on back,” Shanghai Zhen Jiu Za Zhi, vol. 20, no. 2, p. 20, 2001.
  43. R. Ma, X. Zhang, Y. Liu, X. Li, C. Yang, and J. Xiong, “Clinical observation on treatment of tonoclonic attack of infantile epilepsy with acupuncture plus Xi Feng capsule,” Journal of Traditional Chinese Medicine, vol. 42, no. 5, pp. 276–278, 2001.
  44. K. Y. Mao and Z. Guo, “Observations on the efficacy of combined acupuncture and medicine for treating epilepsy secondary to cerebral infarction,” Shanghai Zhen Jiu Za Zhi, vol. 24, no. 6, pp. 17–18, 2005.
  45. J. Zhang, Y. Z. Li, and L. X. Zhuang, “Observation on therapeutic effect of 90 tonic-clonic epilepsy patients treated by catgut implantation therapy,” Zhen Jiu Lin Chuang Za Zhi, vol. 22, no. 6, pp. 8–10, 2006.
  46. L. X. Zhuang, J. Zhang, and Y. Z. Li, “Clinical observation on catgut implantation at acupoint for treatment of general paroxysmal epilepsy,” Zhongguo Zhen Jiu, vol. 26, no. 9, pp. 611–613, 2006. View at Scopus
  47. Y. Ren, “Acupuncture treatment of Jacksonian epilepsy—a report of 98 cases,” Journal of Traditional Chinese Medicine, vol. 26, no. 3, pp. 177–178, 2006. View at Scopus
  48. Z. F. Xu, “Clinical observation on treatment of epileptic seizure by combined catgut embedding and herbal medicine,” Shanghai Zhen Jiu Za Zhi, vol. 25, no. 12, pp. 13–14, 2006.
  49. Y. P. Song, W. Yang, H. M. Guo, and Y. Y. Han, “Clinical observation on acupuncture combined with medicine for treatment of infantile febrile convulsion,” Zhongguo Zhen Jiu, vol. 26, no. 8, pp. 561–562, 2006.
  50. R. Yang and J. S. Cheng, “Effect of acupuncture on epilepsy,” in Acupuncture Therapy for Neurological Diseases: A Neurobiological View, Y. Xia, X. D. Cao, G. C. Wu, and J. S. Cheng, Eds., pp. 326–364, Springer-Tsinghua Press, Beijing, Heidelberg, London, New York, 2010.
  51. C. W. Lai and Y. H. C. Lai, “History of epilepsy in Chinese traditional medicine,” Epilepsia, vol. 32, no. 3, pp. 299–302, 1991. View at Scopus
  52. D. M. Chao, G. Chen, and J. S. Cheng, “Melatonin might be one possible medium of electroacupuncture anti-seizures,” Acupuncture and Electro-Therapeutics Research, vol. 26, no. 1-2, pp. 39–48, 2001. View at Scopus
  53. J. Guo, J. Liu, W. Fu et al., “The effect of electroacupuncture on spontaneous recurrent seizure and expression of GAD67 mRNA in dentate gyrus in a rat model of epilepsy,” Brain Research, vol. 1188, no. 1, pp. 165–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Guo, J. Liu, W. Fu et al., “Effect of electroacupuncture stimulation of hindlimb on seizure incidence and supragranular mossy fiber sprouting in a rat model of epilepsy,” The Journal of Physiological Sciences, vol. 58, no. 5, pp. 309–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Z. Kang and Y. Xia, “Effect of electroacupuncture on experimental epilepsy: roles of different acupoints and stimulation parameters,” Journal of Acupuncture and Tuina Science, vol. 6, no. 5, pp. 279–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. S. T. Kim, S. Jeon, H. J. Park et al., “Acupuncture inhibits kainic acid-induced hippocampal cell death in mice,” The Journal of Physiological Sciences, vol. 58, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Zhang, S. P. Zhang, and H. Q. Zhang, “Antiepileptic effect of electroacupuncture vs. vagus nerve stimulation in the rat thalamus,” Neuroscience Letters, vol. 441, no. 2, pp. 183–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. L. Zhang, S. P. Zhang, and H. Q. Zhang, “Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities,” Journal of the Neurological Sciences, vol. 270, no. 1-2, pp. 114–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Goiz-Marquez, S. Caballero, H. Solis, C. Rodriguez, and H. Sumano, “Electroencephalographic evaluation of gold wire implants inserted in acupuncture points in dogs with epileptic seizures,” Research in Veterinary Science, vol. 86, no. 1, pp. 152–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Kang, X. Shen, and Y. Xia, “Electroacupuncture-induced attenuation of experimental epilepsy: comparative evaluation of acupoints and stimulation parameters,” Evidence-Based Complementary and Alternative Medicine. In press.
  61. R. Kloster, P. G. Larsson, R. Lossius et al., “The effect of acupuncture in chronic intractable epilepsy,” Seizure, vol. 8, no. 3, pp. 170–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Xia, X. Q. Guo, A. Z. Zhang, X. D. Cao, and P. Li, “Inhibitory effect of analogous electro-acupuncture on experimental arrhythmia,” Acupuncture and Electro-Therapeutics Research, vol. 10, no. 1-2, pp. 13–34, 1985. View at Scopus
  63. D. Z. Wu, J. Y. Ma, and W. J. Li, “Inhibitory effect of electro-acupuncture on penicillin-induced cortical epileptiform discharges,” Sheng Li Xue Bao, vol. 38, no. 3, pp. 325–331, 1986.
  64. D. Wu, “Mechanism of acupuncture in suppressing epileptic seizures,” Journal of Traditional Chinese Medicine, vol. 12, no. 3, pp. 187–192, 1992. View at Scopus
  65. H. M. Gao and J. S. Cheng, “Role of intrahippocampal kappa opioid receptors in inhibiting the seizure by electroacupuncture (EA) in rats,” Zhen Ci Yan Jiu, vol. 23, no. 2, pp. 122–125, 1998.
  66. H. Yuan and J. S. Han, “Electroacupuncture accelerates the biogenesis of central enkephalins in the rat,” Sheng Li Xue Bao, vol. 37, no. 3, pp. 265–273, 1985.
  67. B. E. Wang and J. S. Cheng, “The relationship between dynorphon and acupuncture anticonvulsion in hippocampus,” Chinese Science Bulletin, vol. 37, no. 13, pp. 1321–1323, 1992.
  68. B. E. Wang and J. S. Cheng, “Alteration of dynorphin and leu-enkephalin in rat hippocampus during seizure and electroacupuncture,” Zhongguo Yao Li Xue Bao, vol. 15, no. 2, pp. 155–157, 1994. View at Scopus
  69. B. E. Wang and J. S. Cheng, “Release of hippocampal dynorphin during electro-stimulated seizure and acupuncture anti-convulsion,” Shanghai Zhen Jiu Za Zhi, vol. 14, no. 1, pp. 33–34, 1995.
  70. B. E. Wang, R. Yang, and J. S. Cheng, “Effect of electroacupuncture on the level of preproenkephalin mRNA in rat during penicillin-induced epilepsy,” Acupuncture and Electro-Therapeutics Research, vol. 19, no. 2-3, pp. 129–140, 1994. View at Scopus
  71. X. P. He, B. Y. Chen, J. M. Zhu, and X. D. Cao, “Change of Leu-enkephalin- and B-endorphin-like immunoreactivity in the hippocampus after electroconvulsive shock and electroacupuncture,” Acupuncture and Electro-Therapeutics Research, vol. 14, no. 2, pp. 131–139, 1989. View at Scopus
  72. X. P. He and X. D. Cao, “Effects of intrahippocampal δ-receptors on inhibition of electroconvulsive shock by electro-acupuncture,” Zhongguo Yao Li Xue Bao, vol. 10, no. 3, pp. 197–201, 1989. View at Scopus
  73. X. P. He, J. M. Zhu, D. K. Huang, K. Y. Li, and X. D. Cao, “Effect of electroacupuncture on electro-convulsive shock—an autoradiographic study for opioid receptors,” Sheng Li Xue Bao, vol. 42, no. 2, pp. 149–154, 1990. View at Scopus
  74. O. Camilo and L. B. Goldstein, “Seizures and epilepsy after ischemic stroke,” Stroke, vol. 35, no. 7, pp. 1769–1775, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Rocha, M. Cuellar-Herrera, M. Velasco et al., “Opioid receptor binding in parahippocampus of patients with temporal lobe epilepsy: its association with the antiepileptic effects of subacute electrical stimulation,” Seizure, vol. 16, no. 7, pp. 645–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Raynor, H. Kong, Y. Chen et al., “Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptors,” Molecular Pharmacology, vol. 45, no. 2, pp. 330–334, 1994. View at Scopus
  77. G. Witkowski and P. Szulczyk, “Opioid μ receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism,” Brain Research, vol. 1094, no. 1, pp. 92–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Zhao, M. C. Ma, H. Qian, and Y. Xia, “Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy,” Neuroscience Research, vol. 53, no. 4, pp. 442–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Xia, H. Cao, J. H. Zhang et al., “Effect of δ-opioid receptor activation on Na+ channel expression in cortical neurons subjected to prolonged hypoxia in culture,” Society Neuroscience Abstract, vol. 27, article 381, 2001, Program no. 740.6.
  80. C. Remy, S. Remy, H. Beck, D. Swandulla, and M. Hans, “Modulation of voltage-dependent sodium channels by the δ-agonist SNC80 in acutely isolated rat hippocampal neurons,” Neuropharmacology, vol. 47, no. 7, pp. 1102–1112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Chao and Y. Xia, “Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it?” Progress in Neurobiology, vol. 90, no. 4, pp. 439–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. S. Gold and J. D. Levine, “DAMGO inhibits prostaglandin E2-induced potentiation of a TTX- resistant Na+ current in rat sensory neurons in vitro,” Neuroscience Letters, vol. 212, no. 2, pp. 83–86, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Su, S. K. Joshi, S. Kardos, and G. F. Gebhart, “Sodium channel blocking actions of the κ-opioid receptor agonist U50,488 contribute to its visceral antinociceptive effects,” Journal of Neurophysiology, vol. 87, no. 3, pp. 1271–1279, 2002. View at Scopus
  84. W. A. Catterall, “From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels,” Neuron, vol. 26, no. 1, pp. 13–25, 2000. View at Scopus
  85. A. L. Goldin, “Resurgence of sodium channel research,” Annual Review of Physiology, vol. 63, pp. 871–894, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. D. S. Ragsdale, “How do mutant Nav1.1 sodium channels cause epilepsy?” Brain Research Reviews, vol. 58, no. 1, pp. 149–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Escayg and A. L. Goldin, “Sodium channel SCN1A and epilepsy: mutations and mechanisms,” Epilepsia, vol. 51, no. 9, pp. 1650–1658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. W. A. Catterall, F. Kalume, and J. C. Oakley, “NaV1.1 channels and epilepsy,” Journal of Physiology, vol. 588, no. 11, pp. 1849–1859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. M. H. Meisler, J. E. O'Brien, and L. M. Sharkey, “Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects,” Journal of Physiology, vol. 588, no. 11, pp. 1841–1848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. C. S. Cheah, F. H. Yu, R. E. Westenbrook et al., “Specific deletion of Nav1. 1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 36, pp. 14646–14651, 2012.
  91. J. A. Armijo, M. Shushtarian, E. M. Valdizan, A. Cuadrado, I. de las Cuevas, and J. Adín, “Ion channels and epilepsy,” Current Pharmaceutical Design, vol. 11, no. 15, pp. 1975–2003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Sashihara, N. Yanagihara, H. Kobayashi et al., “Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible E1 mice,” Neuroscience, vol. 48, no. 2, pp. 285–291, 1992. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Guo, N. Yu, J. Q. Cai et al., “Voltage-gated sodium channel Nav1.1, Nav1.3 and β1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat,” Brain Research Bulletin, vol. 75, no. 1, pp. 179–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. X. Q. Gu, H. Yao, and G. G. Haddad, “Increased neuronal excitability and seizures in the Na+/H+ exchanger null mutant mouse,” American Journal of Physiology, vol. 281, no. 2, pp. C496–C503, 2001. View at Scopus
  95. H. Blumenfeld, A. Lampert, J. P. Klein et al., “Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis,” Epilepsia, vol. 50, no. 1, pp. 44–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. N. J. Hargus, E. C. Merrick, A. Nigam et al., “Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons,” Neurobiology of Disease, vol. 41, no. 2, pp. 361–376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Bartolomei, M. Gastaldi, A. Massacrier, R. Planells, S. Nicolas, and P. Cau, “Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain,” Journal of Neurocytology, vol. 26, no. 10, pp. 667–678, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Aronica, B. Yankaya, D. Troost, E. A. van Vliet, F. H. Lopes da Silva, and J. A. Gorter, “Induction of neonatal-sodium channel II and III (α-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus,” European Journal of Neuroscience, vol. 13, no. 6, pp. 1261–1266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. R. K. Ellerkmann, S. Remy, J. Chen et al., “Molecular and functional changes in voltage-dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells,” Neuroscience, vol. 119, no. 2, pp. 323–333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Toib, V. Lyakhov, and S. Marom, “Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels,” Journal of Neuroscience, vol. 18, no. 5, pp. 1893–1903, 1998. View at Scopus
  101. C. Chen, V. Bharucha, Y. Chen et al., “Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 17072–17077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. T. K. Aman, T. M. Grieco-Calub, C. Chen et al., “Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels,” Journal of Neuroscience, vol. 29, no. 7, pp. 2027–2042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. W. R. J. Whitaker, R. L. M. Faull, M. Dragunow, E. W. Mee, P. C. Emson, and J. J. Clare, “Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus,” Neuroscience, vol. 106, no. 2, pp. 275–285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. J. A. Gorter, E. Zurolo, A. Iyer et al., “Induction of sodium channel Nax (SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy,” Epilepsia, vol. 51, no. 9, pp. 1791–1800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Vreugdenhil, G. C. Faas, and W. J. Wadman, “Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis,” Neuroscience, vol. 86, no. 1, pp. 99–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. S. O. M. Ketelaars, J. A. Gorter, E. A. van Vliet, F. H. Lopes da Silva, and W. J. Wadman, “Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy,” Neuroscience, vol. 105, no. 1, pp. 109–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. T. H. Rhodes, C. Lossin, C. G. Vanoye, D. W. Wang, and A. L. George Jr., “Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11147–11152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Epsztein, E. Sola, A. Represa, Y. Ben-Ari, and V. Crépel, “A selective interplay between aberrant EPSPKA and INaP reduces spike timing precision in dentate granule cells of epileptic rats,” Cerebral Cortex, vol. 20, no. 4, pp. 898–911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Lossin, “A catalog of SCN1A variants,” Brain and Development, vol. 31, no. 2, pp. 114–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Bechi, P. Scalmani, E. Schiavon, R. Rusconi, S. Franceschetti, and M. Mantegazza, “Pure haploinsufficiency for Dravet syndrome Na(V)1. 1 (SCN1A) sodium channel truncating mutations,” Epilepsia, vol. 53, no. 1, pp. 87–100, 2012.
  111. F. H. Yu, M. Mantegazza, R. E. Westenbroek et al., “Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy,” Nature Neuroscience, vol. 9, no. 9, pp. 1142–1149, 2006. View at Publisher · View at Google Scholar
  112. F. Kalume, F. H. Yu, R. E. Westenbroek, T. Scheuer, and W. A. Catterall, “Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy,” Journal of Neuroscience, vol. 27, no. 41, pp. 11065–11074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. I. Ogiwara, H. Miyamoto, N. Morita et al., “Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation,” Journal of Neuroscience, vol. 27, no. 22, pp. 5903–5914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Ohno, N. Sofue, S. Ishihara, T. Mashimo, M. Sasa, and T. Serikawa, “Scn1a missense mutation impairs GABAA receptor-mediated synaptic transmission in the hippocampus,” Biochemical and Biophysical Research Communications, vol. 400, no. 1, pp. 117–122, 2010. View at Publisher · View at Google Scholar
  115. F. C. Tortella and J. B. Long, “Endogenous anticonvulsant substance in rat cerebrospinal fluid after a generalized seizure,” Science, vol. 228, no. 4703, pp. 1106–1108, 1985. View at Scopus
  116. F. C. Tortella, E. Echevarria, L. Robles, H. I. Mosberg, and J. W. Holaday, “Anticonvulsant effects of mu (DAGO) and delta (DPDPE) enkephalins in rats,” Peptides, vol. 9, no. 5, pp. 1177–1181, 1988. View at Scopus
  117. S. Koide, H. Onishi, S. Yamagami, and Y. Kawakita, “Effects of morphine and D-Ala2-D-Leu5-enkephalin in the seizure- susceptible El mouse,” Neurochemical Research, vol. 17, no. 8, pp. 779–783, 1992. View at Publisher · View at Google Scholar · View at Scopus
  118. I. Madar, R. P. Lesser, G. Krauss et al., “Imaging of δ- and μ-opioid receptors in temporal lobe epilepsy by positron emission tomography,” Annals of Neurology, vol. 41, no. 3, pp. 358–367, 1997. View at Publisher · View at Google Scholar · View at Scopus
  119. I. Danielsson, M. Gasior, G. W. Stevenson, J. E. Folk, K. C. Rice, and S. S. Negus, “Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys,” Pharmacology Biochemistry and Behavior, vol. 85, no. 2, pp. 428–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. E. M. Jutkiewicz, M. G. Baladi, J. E. Folk, K. C. Rice, and J. H. Woods, “The convulsive and electroencephalographic changes produced by nonpeptidic δ-opioid agonists in rats: comparison with pentylenetetrazol,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1337–1348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. S. S. Negus, M. B. Gatch, N. K. Mello, X. Zhang, and K. Rice, “Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 362–375, 1998. View at Scopus
  122. E. M. Jutkiewicz, K. C. Rice, J. R. Traynor, and J. H. Woods, “Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats,” Psychopharmacology, vol. 182, no. 4, pp. 588–596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. S. B. Bausch, J. P. Garland, and J. Yamada, “The delta opioid receptor agonist, SNC80, has complex, dose-dependent effects on pilocarpine-induced seizures in Sprague-Dawley rats,” Brain Research, vol. 1045, no. 1-2, pp. 38–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. X. Rezaï, L. Faget, E. Bednarek, Y. Schwab, B. L. Kieffer, and D. Massotte, “Mouse delta opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells,” Cellular and Molecular Neurobiology, vol. 32, no. 4, pp. 509–516, 2012. View at Publisher · View at Google Scholar
  125. E. Erbs, L. Faget, G. Scherrer et al., “Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus,” Neuroscience, vol. 221, pp. 203–213, 2012. View at Publisher · View at Google Scholar
  126. M. L. Simmons and C. Chavkin, “Endogenous opioid regulation of hippocampal function,” International Review of Neurobiology, vol. 39, pp. 145–196, 1996. View at Scopus
  127. C. T. Drake, C. Chavkin, and T. A. Milner, “Opioid systems in the dentate gyrus,” Progress in Brain Research, vol. 163, pp. 245–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. K. K. S. Hui, O. Marina, J. Liu, B. R. Rosen, and K. K. Kwong, “Acupuncture, the limbic system, and the anticorrelated networks of the brain,” Autonomic Neuroscience: Basic and Clinical, vol. 157, no. 1-2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at Scopus