About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 237207, 17 pages
http://dx.doi.org/10.1155/2013/237207
Research Article

Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms

1Department of Anatomy, College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
2Department of Cancer Preventive Material Development and Institute of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
3Analysis Research Team, R&D Headquarters, Korea Ginseng Corporation, Daejeon 305-805, Republic of Korea

Received 15 September 2012; Revised 29 November 2012; Accepted 2 December 2012

Academic Editor: Bashar Saad

Copyright © 2013 Minhee Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Damiano, L. Galvan, N. Déglon, and E. Brouillet, “Mitochondria in Huntington's disease,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 52–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. MacDonald, C. M. Ambrose, M. P. Duyao et al., “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes,” Cell, vol. 72, no. 6, pp. 971–983, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. Ryu, S. U. Kim, and J. G. McLarnon, “Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington's disease,” Experimental Neurology, vol. 187, no. 1, pp. 150–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. F. Tai, N. Pavese, A. Gerhard et al., “Imaging microglial activation in Huntington's disease,” Brain Research Bulletin, vol. 72, no. 2-3, pp. 148–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Leegwater-Kim and J. H. J. Cha, “The paradigm of Huntington's disease: therapeutic opportunities in neurodegeneration,” NeuroRx, vol. 1, no. 1, pp. 128–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Block and J. S. Hong, “Chronic microglial activation and progressive dopaminergic neurotoxicity,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Lobsiger and D. W. Cleveland, “Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease,” Nature Neuroscience, vol. 10, no. 11, pp. 1355–1360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Sapp, K. B. Kegel, N. Aronin et al., “Early and progressive accumulation of reactive microglia in the Huntington disease brain,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 2, pp. 161–172, 2001. View at Scopus
  9. D. A. Simmons, M. Casale, B. Alcon, N. Pham, N. Narayan, and G. Lynch, “Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's Disease,” GLIA, vol. 55, no. 10, pp. 1074–1084, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Björkqvist, E. J. Wild, J. Thiele et al., “A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1869–1877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Harper and N. Wilkie, “MAPKs: new targets for neurodegeneration,” Expert Opinion on Therapeutic Targets, vol. 7, no. 2, pp. 187–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. P. Mattson and S. Camandola, “NF-κB in neuronal plasticity and neurodegenerative disorders,” Journal of Clinical Investigation, vol. 107, no. 3, pp. 247–254, 2001. View at Scopus
  13. L. Yau and P. Zahradka, “Immunodetection of activated mitogen-activated protein kinase in vascular tissues,” Molecular and Cellular Biochemistry, vol. 172, no. 1-2, pp. 59–66, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Haddad, “N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention?” Progress in Neurobiology, vol. 77, no. 4, pp. 252–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Fan, C. M. Gladding, L. Wang, L. Y. J. Zhang, and A. M. Kaufman, “P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease,” Neurobiology of Disease, vol. 45, no. 3, pp. 999–1009, 2012. View at Publisher · View at Google Scholar
  16. Y. F. Liu, D. Dorow, and J. Marshall, “Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin,” Journal of Biological Chemistry, vol. 275, no. 25, pp. 19035–19040, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Sugino, K. Nozaki, and N. Hashimoto, “Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid,” Neuroscience Letters, vol. 278, no. 1-2, pp. 101–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Garcia, P. Vanhoutte, C. Pages, M. J. Besson, E. Brouillet, and J. Caboche, “The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module,” Journal of Neuroscience, vol. 22, no. 6, pp. 2174–2184, 2002. View at Scopus
  19. M. Garcia, D. Charvin, and J. Caboche, “Expanded huntingtin activates the C-Jun N terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture,” Neuroscience, vol. 127, no. 4, pp. 859–870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. L. Apostol, K. Illes, J. Pallos et al., “Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity,” Human Molecular Genetics, vol. 15, no. 2, pp. 273–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. T. Chu, D. J. Levinthal, S. M. Kulich, E. M. Chalovich, and D. B. DeFranco, “Oxidative neuronal injury: the dark side of ERK1/2,” European Journal of Biochemistry, vol. 271, no. 11, pp. 2060–2066, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Hetman and A. Gosdz, “Role of extracellular signal regulated kinases 1 and 2 in neuronal survival,” European Journal of Biochemistry, vol. 271, no. 11, pp. 2050–2055, 2004. View at Publisher · View at Google Scholar
  23. I. Ferrer, R. Blanco, and M. Carmona, “Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat,” Molecular Brain Research, vol. 94, no. 1-2, pp. 48–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Gianfriddo, A. Melani, D. Turchi, M. G. Giovannini, and F. Pedata, “Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow,” Neurobiology of Disease, vol. 17, no. 1, pp. 77–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. H. Qin, R. W. Chen, Y. Wang, M. Nakai, D. M. Chuang, and T. N. Chase, “Nuclear factor κB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum,” Journal of Neuroscience, vol. 19, no. 10, pp. 4023–4033, 1999. View at Scopus
  26. K. T. Choi, “Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer,” Acta Pharmacologica Sinica, vol. 29, no. 9, pp. 1109–1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Shibata, M. Fujita, H. Itokawa, O. Tanaka, and T. Ishii, “Studies on the constituents of Japanese and Chinese crude drugs. Xi. Panaxadiol, a Sapogenin of Ginseng Roots,” Chemical & Pharmaceutical Bulletin, vol. 11, pp. 759–761, 1963.
  28. C. Xiaoguang, L. Hongyan, L. Xiaohong et al., “Cancer chemopreventive and therapeutic activities of red ginseng,” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 71–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. S. H. Oh and B. H. Lee, “A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage,” Toxicology and Applied Pharmacology, vol. 194, no. 3, pp. 221–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. H. I. Jang and H. M. Shin, “Wild Panax ginseng (Panax ginseng C.A. Meyer) protects against methotrexate-induced cell regression by enhancing the immune response in RAW 264.7 macrophages,” American Journal of Chinese Medicine, vol. 38, no. 5, pp. 949–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Radad, G. Gille, L. Liu, and W. D. Rausch, “Use of ginseng in medicine with emphasis on neurodegenerative disorders,” Journal of Pharmacological Sciences, vol. 100, no. 3, pp. 175–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. I.-H. Cho, “Efects of Panax ginseng in neurodegenerative diseases,” Journal of Ginseng Research, vol. 36, no. 4, pp. 342–353, 2012. View at Publisher · View at Google Scholar
  33. C. G. Benishin, “Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings,” Neurochemistry International, vol. 21, no. 1, pp. 1–5, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Rudakewich, F. Ba, and C. G. Benishin, “Neurotrophic and neuroprotective actions of ginsenosides Rb1and Rg1,” Planta Medica, vol. 67, no. 6, pp. 533–537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Y. Cha, J. H. Park, J. T. Hong et al., “Anxiolytic-like effects of ginsenosides on the elevated plus-maze model in mice,” Biological and Pharmaceutical Bulletin, vol. 28, no. 9, pp. 1621–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wang, S. Zhu, M. Drozda et al., “Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10483–10487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. Kim, S. Kim, I. S. Yoon et al., “Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats,” Neuropharmacology, vol. 48, no. 5, pp. 743–756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wu, H. K. Jeong, S. E. Bulin, S. W. Kwon, J. H. Park, and I. Bezprozvanny, “Ginsenosides protect striatal neurons in a cellular model of Huntington's disease,” Journal of Neuroscience Research, vol. 87, no. 8, pp. 1904–1912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. A. Shah, R. A. Gilani, P. Sharma, and S. B. Vohora, “Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 299–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Q. Zheng, W. Cheng, Y. Wang et al., “Ginseng total saponins enhance neurogenesis after focal cerebral ischemia,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 724–728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. S. Jung, J. A. Shin, E. M. Park et al., “Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide- stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression,” Journal of Neurochemistry, vol. 115, no. 6, pp. 1668–1680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Park, E. M. Park, D. H. Kim et al., “Anti-inflammatory mechanism of ginseng saponins in activated microglia,” Journal of Neuroimmunology, vol. 209, no. 1-2, pp. 40–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Zhu, Y. Jiang, L. Wu, T. Lu, G. Xu, and X. Liu, “Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia,” Neuroscience, vol. 202, pp. 342–351, 2012. View at Publisher · View at Google Scholar
  44. H. Y. Son, H. S. Han, H. W. Jung, and Y. K. Park, “Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia,” Journal of Pharmacological Sciences, vol. 109, no. 3, pp. 368–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Korea Food and Drug Administration, Korea Food and Drug Administration, Korea Food Code, Mun-Young, Seoul, Republic of Korea, 2007.
  46. Q. Y. Huang, C. Wei, L. Yu et al., “Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation,” Journal of Neuroscience, vol. 26, no. 44, pp. 11371–11378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. P. O. Fernagut, E. Diguet, N. Stefanova et al., “Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation,” Neuroscience, vol. 114, no. 4, pp. 1005–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. K. J. B. Franklin and G. Paxions, The Mouse Brain in Stereotaxic Coordinates, Elsevier Academic Press, San Diego, Calif, USA, 2008.
  49. I. H. Cho, J. Hong, E. C. Suh et al., “Role of microglial IKKβ in kainic acid-induced hippocampal neuronal cell death,” Brain, vol. 131, no. 11, pp. 3019–3033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Mestre, T. Pelissier, J. Fialip, G. Wilcox, and A. Eschalier, “A method to perform direct transcutaneous intrathecal injection in rats,” Journal of Pharmacological and Toxicological Methods, vol. 32, no. 4, pp. 197–200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Jang, H.-S. Jung, S.-H. Kim, and I.-H. Cho, “Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation,” Molecular Pain, vol. 8, article 40, 2012. View at Publisher · View at Google Scholar
  53. X. C. Chen, Y. C. Zhou, Y. Chen, Y. G. Zhu, F. Fang, and L. M. Chen, “Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress,” Acta Pharmacologica Sinica, vol. 26, no. 1, pp. 56–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. L. Ge, W. F. Chen, J. X. Xie, and M. S. Wong, “Ginsenoside Rg1 protects against 6-OHDA-induced toxicity in MES23.5 cells via Akt and ERK signaling pathways,” Journal of Ethnopharmacology, vol. 127, no. 1, pp. 118–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Gu, M. T. Gash, V. M. Mann, F. Javoy-Agid, J. M. Cooper, and A. H. V. Schapira, “Mitochondrial defect in Huntington's disease caudate nucleus,” Annals of Neurology, vol. 39, no. 3, pp. 385–389, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. S. E. Browne, A. C. Bowling, U. MacGarvey et al., “Oxidative damage and metabolic dysfunction in huntington's disease: selective vulnerability of the basal ganglia,” Annals of Neurology, vol. 41, no. 5, pp. 646–653, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Tabrizi, M. W. J. Cleeter, J. Xuereb, J.-W. Taanman, J. M. Cooper, and A. H. V. Schapira, “Biochemical abnormalities and excitotoxicity in Huntington's disease brain,” Annals of Neurology, vol. 45, no. 1, pp. 25–32, 1999. View at Publisher · View at Google Scholar
  58. A. V. Panov, C. A. Gutekunst, B. R. Leavitt et al., “Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines,” Nature Neuroscience, vol. 5, no. 8, pp. 731–736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. M. F. Beal, “Mitochondria take center stage in aging and neurodegeneration,” Annals of Neurology, vol. 58, no. 4, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Brouillet, C. Jacquard, N. Bizat, and D. Blum, “3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease,” Journal of Neurochemistry, vol. 95, no. 6, pp. 1521–1540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Chen, V. O. Ona, M. Li et al., “Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease,” Nature Medicine, vol. 6, no. 7, pp. 797–801, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. C. C. Hsieh and J. Papaconstantinou, “The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid,” Mechanisms of Ageing and Development, vol. 123, no. 11, pp. 1423–1435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. C. C. Hsieh, J. I. Rosenblatt, and J. Papaconstantinou, “Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid,” Mechanisms of Ageing and Development, vol. 124, no. 6, pp. 733–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Kulisz, N. Chen, N. S. Chandel, Z. Shao, and P. T. Schumacker, “Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes,” American Journal of Physiology, vol. 282, no. 6, pp. L1324–L1329, 2002. View at Scopus
  65. P. Juo, C. J. Kuo, S. E. Reynolds et al., “Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases,” Molecular and Cellular Biology, vol. 17, no. 1, pp. 24–35, 1997. View at Scopus
  66. I. Bezprozvanny and M. R. Hayden, “Deranged neuronal calcium signaling and Huntington disease,” Biochemical and Biophysical Research Communications, vol. 322, no. 4, pp. 1310–1317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Cattaneo and P. Calabresi, “Mutant huntingtin goes straight to the heart,” Nature Neuroscience, vol. 5, no. 8, pp. 711–712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Camandola and M. P. Mattson, “NF-κB as a therapeutic target in neurodegenerative diseases,” Expert Opinion on Therapeutic Targets, vol. 11, no. 2, pp. 123–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Malek, K. K. Borowicz, M. Jargiello, and S. J. Czuczwar, “Role of nuclear factor kappaB in the central nervous system,” Pharmacological Reports, vol. 59, no. 1, pp. 25–33, 2007.
  70. D. F. Cechetto, “Role of nuclear factor kappa B in neuropathological mechanisms,” Progress in Brain Research, vol. 132, pp. 391–404, 2001. View at Publisher · View at Google Scholar · View at Scopus