About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 262796, 13 pages
http://dx.doi.org/10.1155/2013/262796
Research Article

The Phytochemical Shikonin Stimulates Epithelial-Mesenchymal Transition (EMT) in Skin Wound Healing

Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan

Received 28 November 2012; Accepted 8 May 2013

Academic Editor: Taiping Fan

Copyright © 2013 Shu-Yi Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Touno, J. Tamaoka, Y. Ohashi, and K. Shimomura, “Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon,” Plant Physiology and Biochemistry, vol. 43, no. 2, pp. 101–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. E. Koehn and G. T. Carter, “The evolving role of natural products in drug discovery,” Nature Reviews Drug Discovery, vol. 4, no. 3, pp. 206–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Chung, M. Kang, C. Cho et al., “Inhibition of lipopolysaccharide and interferon-gamma-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by Lithospermi radix in mouse peritoneal macrophages,” Journal of Ethnopharmacology, vol. 102, no. 3, pp. 412–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Chen, L. Yang, J. J. Oppenheim, and O. M. Zack Howard, “Cellular pharmacology studies of shikonin derivatives,” Phytotherapy Research, vol. 16, no. 3, pp. 199–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hayashi, S. Tsurumi, and H. Fujimura, “Pharmacological activities of Lithospermum root,” Japanese Journal of Pharmcology, vol. 65, pp. 195–196, 1969.
  6. V. Staniforth, S. Wang, L. Shyur, and N. Yang, “Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5877–5885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Chiu and N. Yang, “Inhibition of tumor necrosis factor-α through selective blockade of Pre-mRNA splicing by shikonin,” Molecular Pharmacology, vol. 71, no. 6, pp. 1640–1645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Han, L. Li, S. Qiu et al., “Shikonin circumvents cancer drug resistance by induction of a necroptotic death,” Molecular Cancer Therapeutics, vol. 6, no. 5, pp. 1641–1649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nakaya and T. Miyasaka, “A shikonin derivative, β-hydroxyisovalerylshikonin, is an ATP-non-competitive inhibitor of protein tyrosine kinases,” Anti-Cancer Drugs, vol. 14, no. 9, pp. 683–693, 2003. View at Scopus
  10. S. Li, Ben Cao Gang Mu, vol. 1, 1590.
  11. B. S. Kaith, N. S. Kaith, and N. S. Chauhan, “Anti-inflammatory effect of Arnebia euchroma root extracts in rats,” Journal of Ethnopharmacology, vol. 55, no. 1, pp. 77–80, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Sakaguchi, M. Tsujimura, N. Ikeda et al., “Granulomatous tissue formation of shikon and shikonin by air pouch method,” Biological and Pharmaceutical Bulletin, vol. 24, no. 6, pp. 650–655, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. D. Hay, “An overview of epithelio-mesenchymal transformation,” Acta Anatomica, vol. 154, no. 1, pp. 8–20, 1995. View at Scopus
  14. R. Levayer and T. Lecuit, “Breaking down EMT,” Nature Cell Biology, vol. 10, no. 7, pp. 757–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Zeisberg and R. Kalluri, “Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis,” Frontiers in Bioscience, vol. 13, no. 18, pp. 6991–6998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Acloque, M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto, “Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1438–1449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Moreno-Bueno, H. Peinado, P. Molina et al., “The morphological and molecular features of the epithelial-to-mesenchymal transition,” Nature protocols, vol. 4, no. 11, pp. 1591–1613, 2009. View at Scopus
  18. Y. Katoh and M. Katoh, “Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review),” International Journal of Molecular Medicine, vol. 22, no. 3, pp. 271–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-H. Wang, K.-F. Lin, S. A. Benson, et al., “Tissue array transgene expression system for the evaluation of effect of medicinal herbs on wound-healing,” Journal of Genetics and Molecular Biology, vol. 14, no. 3, pp. 133–134.
  21. D. J. Lockhart, H. Dong, M. C. Byrne et al., “Expression monitoring by hybridization to high-density oligonucleotide arrays,” Nature Biotechnology, vol. 14, no. 13, pp. 1675–1680, 1996. View at Scopus
  22. C. Wang, M. Chiao, P. Yen et al., “Modulatory effects of Echinacea purpurea extracts on human dendritic cells: a cell- and gene-based study,” Genomics, vol. 88, no. 6, pp. 801–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Wang, V. Staniforth, M. Chiao et al., “Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells,” BMC Genomics, vol. 9, article 479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Yin, W. Wang, P. Wang et al., “Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses,” BMC Genomics, vol. 11, no. 1, article 612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Ambros, “A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans,” Cell, vol. 57, no. 1, pp. 49–57, 1989. View at Scopus
  26. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. R. Horvitz, P. W. Sternberg, I. S. Greenwald, W. Fixsen, and H. M. Ellis, “Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 48, part 2, pp. 453–463, 1983. View at Scopus
  28. L. Song and R. S. Tuan, “MicroRNAs and cell differentiation in mammalian development,” Birth Defects Research C, vol. 78, no. 2, pp. 140–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Li, Q. Zhang, X. Yin et al., “Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules,” Cell Research, vol. 21, no. 1, pp. 196–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhao, X. Yin, H. Qin et al., “Two supporting factors greatly improve the efficiency of human iPSC generation,” Cell Stem Cell, vol. 3, no. 5, pp. 475–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Griffiths-Jones, H. K. Saini, S. van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, no. 1, Database issue, pp. D154–D158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron, “Variance stabilization applied to microarray data calibration and to the quantification of differential expression,” Bioinformatics, vol. 18, supplement 1, pp. S96–S104, 2002. View at Scopus
  33. S. Vorwerk, K. Ganter, Y. Cheng, J. Hoheisel, P. F. Stähler, and M. Beier, “Microfluidic-based enzymatic on-chip labeling of miRNAs,” New Biotechnology, vol. 25, no. 2-3, pp. 142–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Yan, W. A. Grimm, W. L. Garner et al., “Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2,” American Journal of Pathology, vol. 176, no. 5, pp. 2247–2258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. G. Greenhalgh, K. H. Sprugel, M. J. Murray, and R. Ross, “PDGF and FGF stimulate wound healing in the genetically diabetic mouse,” American Journal of Pathology, vol. 136, no. 6, pp. 1235–1246, 1990. View at Scopus
  36. S. Schuierer, L. Tranchevent, U. Dengler, and Y. Moreau, “Large-scale benchmark of Endeavour using MetaCore maps,” Bioinformatics, vol. 26, no. 15, Article ID btq307, pp. 1922–1923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. W. Carthew and E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. Croce and G. A. Calin, “miRNAs, cancer, and stem cell division,” Cell, vol. 122, no. 1, pp. 6–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Khvorova, A. Reynolds, and S. D. Jayasena, “Functional siRNAs and miRNAs exhibit strand bias,” Cell, vol. 115, no. 2, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. E. J. Sontheimer and R. W. Carthew, “Silence from within: endogenous siRNAs and miRNAs,” Cell, vol. 122, no. 1, pp. 9–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Chen, J. Oppenheim, and O. M. Z. Howard, “Shikonin, a component of antiinflammatory Chinese herbal medicine, selectively blocks chemokine binding to CC chemokine receptor-1,” International Immunopharmacology, vol. 1, no. 2, pp. 229–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Hisa, Y. Kimura, K. Takada, F. Suzuki, and M. Takigawa, “Shikonin, an ingredient of Lithospermum erythrorhizon, inhibits angiogenesis in vivo and in vitro,” Anticancer Research, vol. 18, no. 2A, pp. 783–790, 1998. View at Scopus
  43. S. A. Eming, T. Krieg, and J. M. Davidson, “Inflammation in wound repair: molecular and cellular mechanisms,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 514–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Spies, O. Nesic, R. E. Barrow, J. R. Perez-Polo, and D. N. Herndon, “Liposomal IGF-1 gene transfer modulates pro- and anti-inflammatory cytokine mRNA expression in the burn wound,” Gene Therapy, vol. 8, no. 18, pp. 1409–1415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Wang, G. Han, P. Owens, Y. Siddiqui, and A. G. Li, “Role of TGFβ-mediated inflammation in cutaneous wound healing,” Journal of Investigative Dermatology Symposium Proceedings, vol. 11, no. 1, pp. 112–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Chiu, S. Tsao, P. Hwang, S. Vanisree, Y. Chen, and N. Yang, “Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling,” BMC Genomics, vol. 11, no. 1, article 513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Zeisberg and E. G. Neilson, “Biomarkers for epithelial-mesenchymal transitions,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1429–1437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus