About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 283941, 10 pages
http://dx.doi.org/10.1155/2013/283941
Research Article

A Novel Porous Gelatin Composite Containing Naringin for Bone Repair

1Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
2School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
3Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan

Received 12 September 2012; Revised 15 December 2012; Accepted 22 December 2012

Academic Editor: Chong-Zhi Wang

Copyright © 2013 Kuo-Yu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ogose, N. Kondo, H. Umezu et al., “Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones,” Biomaterials, vol. 27, no. 8, pp. 1542–1549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. S. Liu, C. H. Yao, Y. S. Chen, and S. H. Hsu, “In vitro evaluation of degradation and cytotoxicity of a novel composite as a bone substitute,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1163–1169, 2003. View at Scopus
  3. C. H. Yao, B. S. Liu, S. H. Hsu, Y. S. Chen, and C. C. Tsai, “Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin,” Journal of Biomedical Materials Research A, vol. 69, no. 4, pp. 709–717, 2004. View at Scopus
  4. C. H. Yao, B. S. Liu, S. H. Hsu, and Y. S. Chen, “Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite,” Biomaterials, vol. 26, no. 16, pp. 3065–3074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. C. Barradas, H. Yuan, C. A. van Blitterswijk, and P. Habibovic, “Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms,” European Cells and Materials, vol. 21, pp. 407–429, 2011.
  6. G. Matsumoto, Y. Omi, E. Kubota et al., “Enhanced regeneration of critical bone defects using a biodegradable gelatin sponge and β-tricalcium phosphate with bone morphogenetic protein-2,” Journal of Biomaterials Applications, vol. 24, no. 4, pp. 327–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. C. Dong, M. C. Hueih, and C. H. Yao, “A novel bone substitute composite composed of tricalcium phosphate, gelatin and drynaria fortunei herbal extract,” Journal of Biomedical Materials Research A, vol. 84, no. 1, pp. 167–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Yao, B. S. Liu, C. G. Liu, and Y. S. Chen, “Osteogenic potential using a malleable, biodegradable composite added traditional Chinese medicine: in vitro and in vivo evaluations,” The American Journal of Chinese Medicine, vol. 34, no. 5, pp. 873–886, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Yao, H. M. Tsai, Y. S. Chen, and B. S. Liu, “Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin, and Chinese medicine as a bone substitute,” Journal of Biomedical Materials Research B, vol. 75, no. 2, pp. 277–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Yao, C. C. Tsai, Y. S. Chen et al., “Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin and Chi-Li-Saan as a bone substitute,” The American Journal of Chinese Medicine, vol. 30, no. 4, pp. 471–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. K. Wong and A. B. M. Rabie, “Traditional Chinese medicines and bone formation—a review,” Journal of Oral and Maxillofacial Surgery, vol. 64, no. 5, pp. 828–837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Y. Hung, T. L. Chen, M. H. Liao et al., “Drynaria fortunei J. Sm. promotes osteoblast maturation by inducing differentiation-related gene expression and protecting against oxidative stress-induced apoptotic insults,” Journal of Ethnopharmacology, vol. 131, no. 1, pp. 70–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. L. Wang, N. L. Wang, Y. Zhang et al., “Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (Kunze) J. Sm. on osteoblastic proliferation using an osteoblast-like cell line,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 1, pp. 46–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. C. Jeong, J. W. Lee, C. H. Yoon et al., “Stimulative effects of Drynariae Rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 cells,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 489–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Jeong, J. W. Lee, C. H. Yoon, H. M. Kim, and C. H. Kim, “Drynariae Rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagenase-1,” Toxicology In Vitro, vol. 18, no. 6, pp. 829–834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. S. Sun, C. Y. Lin, G. C. Dong et al., “The effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) on bone cell activities,” Biomaterials, vol. 23, no. 16, pp. 3377–3385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Habauzit, S. M. Sacco, A. Gil-Izquierdo, et al., “Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism,” Bone, vol. 49, no. 5, pp. 1108–1116, 2011. View at Publisher · View at Google Scholar
  18. Y. Lu, C. Zhang, P. Bucheli, and D. Wei, “Citrus flavonoids in fruit and taditional Chinese medicinal food ingredients in China,” Plant Foods for Human Nutrition, vol. 61, no. 2, pp. 57–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Manthey and K. Grohmann, “Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses,” Journal of Agricultural and Food Chemistry, vol. 49, no. 7, pp. 3268–3273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. B. Wu, Y. C. Fong, H. Y. Tsai, Y. F. Chen, M. Tsuzuki, and C. H. Tang, “Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts,” European Journal of Pharmacology, vol. 588, no. 2-3, pp. 333–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Wei, Z. Yang, P. Li, Y. Zhang, and W. C. Sse, “Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model,” The American Journal of Chinese Medicine, vol. 35, no. 4, pp. 663–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Mandadi, M. Ramirez, G. K. Jayaprakasha et al., “Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats,” Phytomedicine, vol. 16, no. 6-7, pp. 513–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Y. Pang, X. L. Wang, S. K. Mok et al., “Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells,” British Journal of Pharmacology, vol. 159, no. 8, pp. 1693–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Zhou, P. Zhang, C. Zhang, and Z. Zhu, “Promotion of bone formation by naringin in a titanium particle-induced diabetic murine calvarial osteolysis model,” Journal of Orthopaedic Research, vol. 28, no. 4, pp. 451–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Y. Lin, J. S. Sun, S. Y. Sheu, F. H. Lin, Y. J. Wang, and L. T. Chen, “The effect of Chinese medicine on bone cell activities,” The American Journal of Chinese Medicine, vol. 30, no. 2-3, pp. 271–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Sato, I. Morita, and S. Murota, “Involvement of cholesterol in osteoclast-like cell formation via cellular fusion,” Bone, vol. 23, no. 2, pp. 135–140, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Takahashi, T. Akatsu, N. Udagawa et al., “Osteoblastic cells are involved in osteoclast formation,” Endocrinology, vol. 123, no. 5, pp. 2600–2602, 1988. View at Scopus
  28. G. Ciapetti, L. Ambrosio, L. Savarino et al., “Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study,” Biomaterials, vol. 24, no. 21, pp. 3815–3824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Sun and R. M. Chang, “Alveolar mononuclear cells can develop into multinucleated osteoclasts: an in vitro cell culture model,” Journal of Biomedical Materials Research, vol. 52, no. 1, pp. 142–147, 2000. View at Publisher · View at Google Scholar
  30. R. W. K. Wong and A. B. M. Rabie, “Effect of naringin on bone cells,” Journal of Orthopaedic Research, vol. 24, no. 11, pp. 2045–2050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wang, L. Zhen, G. Zhang, M. S. Wong, L. Qin, and X. Yao, “Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei—An in vitro efficacy study,” Phytomedicine, vol. 18, no. 10, pp. 868–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Zhang, K. R. Dai, S. G. Yan et al., “Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell,” European Journal of Pharmacology, vol. 607, no. 1–3, pp. 1–5, 2009.
  33. J. P. Schmitz and J. O. Hollinger, “The critical size defect as an experimental model for craniomandibulofacial nonunions,” Clinical Orthopaedics and Related Research, vol. 205, pp. 299–308, 1986. View at Scopus
  34. R. W. K. Wong and A. B. M. Rabie, “Effect of naringin collagen graft on bone formation,” Biomaterials, vol. 27, no. 9, pp. 1824–1831, 2006. View at Publisher · View at Google Scholar · View at Scopus