About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 297839, 11 pages
http://dx.doi.org/10.1155/2013/297839
Review Article

What Is the de-qi-Related Pattern of BOLD Responses? A Review of Acupuncture Studies in fMRI

1Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi 710071, China
2Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 25 September 2012; Revised 24 December 2012; Accepted 6 January 2013

Academic Editor: Vitaly Napadow

Copyright © 2013 Jinbo Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kong, R. Gollub, T. Huang et al., “Acupuncture De Qi, from qualitative history to quantitative measurement,” Journal of Alternative and Complementary Medicine, vol. 13, no. 10, pp. 1059–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Y. Chiang, C. T. Chang, H. L. Chu, and L. F. Yang, “Peripheral afferent pathway for acupuncture analgesia,” Scientia Sinica, pp. 210–217, 1973.
  3. J. Kong, D. T. Fufa, A. J. Gerber et al., “Psychophysical outcomes from a randomized pilot study of manual, electro, and sham acupuncture treatment on experimentally induced thermal pain,” Journal of Pain, vol. 6, no. 1, pp. 55–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Takeda and J. Wessel, “Acupuncture for the treatment of pain of osteoarthritic knees,” Arthritis Care and Research, vol. 7, no. 3, pp. 118–122, 1994. View at Scopus
  5. A. Benham and M. I. Johnson, “Could acupuncture needle sensation be a predictor of analgesic response?” Acupuncture in Medicine, vol. 27, no. 2, pp. 65–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Johnson and A. E. Benham, “Acupuncture needle sensation: the emerging evidence,” Acupuncture in Medicine, vol. 28, no. 3, pp. 111–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. C. E. Lim, “What do we know about needling sensation (de qi) and pain outcomes?” Focus on Alternative and Complementary Therapies, vol. 16, no. 2, pp. 126–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. White, P. Prescott, and G. Lewith, “Does needling sensation (de qi) affect treatment outcome in pain? Analysis of data from a larger single-blind, randomised controlled trial,” Acupuncture in Medicine, vol. 28, no. 3, pp. 120–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. S. Yin, H. J. Park, S. Y. Kim et al., “Electroencephalogram changes according to the subjective acupuncture sensation,” Neurological Research, vol. 32, supplement 1, pp. S31–S36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Vas, E. Perea-Milla, C. Méndez et al., “Efficacy and safety of acupuncture for chronic uncomplicated neck pain: a randomised controlled study,” Pain, vol. 126, no. 1–3, pp. 245–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Witt, B. Brinkhaus, S. Jena et al., “Acupuncture in patients with osteoarthritis of the knee: a randomised trial,” The Lancet, vol. 366, no. 9480, pp. 136–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. M. Berman, L. Lao, P. Langenberg, W. L. Lee, A. M. K. Gilpin, and M. C. Hochberg, “Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee. A randomized, controlled trial,” Annals of Internal Medicine, vol. 141, no. 12, pp. 901–910, 2004. View at Scopus
  13. H. P. Scharf, U. Mansmann, K. Streitberger et al., “Acupuncture and knee osteoarthritis: a three-armed randomized trial,” Annals of Internal Medicine, vol. 145, no. 1, pp. 12–20, 2006. View at Scopus
  14. M. Haake, H. H. Müller, C. Schade-Brittinger et al., “German Acupuncture Trials (GERAC) for chronic low back pain: randomized, multicenter, blinded, parallel-group trial with 3 groups,” Archives of Internal Medicine, vol. 167, no. 17, pp. 1892–1898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Benham, G. Phillips, and M. I. Johnson, “An experimental study on the self-report of acupuncture needle sensation during deep needling with bi-directional rotation,” Acupuncture in Medicine, vol. 28, no. 1, pp. 16–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. K. S. Hui, E. E. Nixon, M. G. Vangel et al., “Characterization of the “deqi” response in acupuncture,” BMC Complementary and Alternative Medicine, vol. 7, article 33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Y. Leung, J. Park, G. Schulteis, J. R. Duann, and T. Yaksh, “The electrophysiology of De Qi sensations,” Journal of Alternative and Complementary Medicine, vol. 12, no. 8, pp. 743–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. MacPherson and A. Asghar, “Acupuncture needle sensations associated with De Qi: a classification based on experts' ratings,” Journal of Alternative and Complementary Medicine, vol. 12, no. 7, pp. 633–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Mao, J. T. Farrar, K. Armstrong, A. Donahue, J. Ngo, and M. A. Bowman, “De qi: Chinese acupuncture patients' experiences and beliefs regarding acupuncture needling sensation—an exploratory survey,” Acupuncture in Medicine, vol. 25, no. 4, pp. 158–165, 2007. View at Scopus
  20. D. Pach, C. Hohmann, R. Lüdtke, F. Zimmermann-Viehoff, C. M. Witt, and C. Thiele, “German translation of the southampton needle sensation questionnaire: use in an experimental acupuncture study,” Forschende Komplementarmedizin, vol. 18, no. 6, pp. 321–326, 2011. View at Publisher · View at Google Scholar
  21. J. Park, H. Park, H. Lee, S. Lim, K. Ahn, and H. Lee, “Deqi sensation between the acupuncture-experienced and the Naïve: a Korean study II,” American Journal of Chinese Medicine, vol. 33, no. 2, pp. 329–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Park, A. White, C. Stevinson, E. Ernst, and M. James, “Validating a new non-penetrating sham acupuncture device: two randomised controlled trials,” Acupuncture in Medicine, vol. 20, no. 4, pp. 168–174, 2002. View at Scopus
  23. C. A. Vincent, P. H. Richardson, J. J. Black, and C. E. Pither, “The significance of needle placement site in acupuncture,” Journal of Psychosomatic Research, vol. 33, no. 4, pp. 489–496, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. A. White, M. Cummings, P. Barlas et al., “Defining an adequate dose of acupuncture using a neurophysiological approach—a narrative review of the literature,” Acupuncture in Medicine, vol. 26, no. 2, pp. 111–120, 2008. View at Scopus
  25. P. White, F. Bishop, H. Hardy et al., “Southampton needle sensation questionnaire: development and validation of a measure to gauge acupuncture needle sensation,” Journal of Alternative and Complementary Medicine, vol. 14, no. 4, pp. 373–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. T. W. Yu, A. Y. M. Jones, and M. Y. C. Pang, “Development and validation of the chinese version of the massachusetts general hospital acupuncture sensation scale: an exploratory and methodological study,” Acupuncture in Medicine, vol. 30, no. 3, pp. 214–221, 2012. View at Publisher · View at Google Scholar
  27. K. Zhou, J. Fang, X. Wang et al., “Characterization of De Qi with electroacupuncture at acupoints with different properties,” Journal of Alternative and Complementary Medicine, vol. 17, no. 11, pp. 1007–1013, 2011. View at Publisher · View at Google Scholar
  28. L. Bai, W. Qin, J. Tian et al., “Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks,” Brain Research, vol. 1279, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bai, J. Tian, C. Zhong et al., “Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study,” Molecular Pain, vol. 6, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. P. Dhond, C. Yeh, K. Park, N. Kettner, and V. Napadow, “Acupuncture modulates resting state connectivity in default and sensorimotor brain networks,” Pain, vol. 136, no. 3, pp. 407–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Qin, J. Tian, L. Bai et al., “FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network,” Molecular Pain, vol. 4, article 55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Fang, Z. Jin, Y. Wang et al., “The salient characteristics of the central effects of acupuncture needling: limbic-paralimbic-neocortical network modulation,” Human Brain Mapping, vol. 30, no. 4, pp. 1196–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. K. S. Hui, J. Liu, O. Marina et al., “The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI,” NeuroImage, vol. 27, no. 3, pp. 479–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Napadow, N. Makris, J. Liu, N. W. Kettner, K. K. Kwong, and K. K. S. Hui, “Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI,” Human Brain Mapping, vol. 24, no. 3, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. S. Yoo, E. K. Teh, R. A. Blinder, and F. A. Jolesz, “Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study,” NeuroImage, vol. 22, no. 2, pp. 932–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Sun, W. Qin, M. Dong et al., “Evaluation of group homogeneity during acupuncture stimulation in fMRI studies,” Journal of Magnetic Resonance Imaging, vol. 32, no. 2, pp. 298–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Henderson, R. Bandler, S. C. Gandevia, and V. G. MacEfield, “Distinct forebrain activity patterns during deep versus superficial pain,” Pain, vol. 120, no. 3, pp. 286–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Beissner, R. Deichmann, C. Henke, and K.-J. Bär, “Acupuncture—deep pain with an autonomic dimension?” NeuroImage, vol. 60, no. 1, pp. 653–660, 2012. View at Publisher · View at Google Scholar
  39. F. Beissner, “Functional magnetic resonance imaging studies of acupuncture mechanisms: a critique,” Focus on Alternative and Complementary Therapies, vol. 16, no. 1, pp. 3–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Sun, Y. Zhu, L. Jin, et al., “Partly separated activations in the spatial distribution between de-qi and sharp pain during acupuncture stimulation: an fMRI-based study,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 934085, 11 pages, 2012. View at Publisher · View at Google Scholar
  41. T. Lewis, Pain, McMillan, New York, NY, USA, 1942.
  42. R. Bandler, J. L. Price, and K. A. Keay, “Brain mediation of active and passive emotional coping,” Progress in Brain Research, vol. 122, pp. 333–349, 2000. View at Scopus
  43. B. M. Lumb, “Hypothalamic and Midbrain Circuitry That Distinguishes between Escapable and Inescapable Pain,” News in Physiological Sciences, vol. 19, no. 1, pp. 22–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. W. Nathan, M. C. Smith, and A. W. Cook, “Sensory effects in man of lesions of the posterior columns and of some other afferent pathways,” Brain, vol. 109, no. 5, pp. 1003–1041, 1986. View at Scopus
  45. H. J. W. Nauta, V. M. Soukup, R. H. Fabian et al., “Punctate midline myelotomy for the relief of visceral cancer pain,” Journal of Neurosurgery, vol. 92, no. 2, pp. 125–130, 2000. View at Scopus
  46. W. Noordenbos and P. D. Wall, “Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant,” Pain, vol. 2, no. 2, pp. 185–195, 1976. View at Publisher · View at Google Scholar · View at Scopus
  47. A. C. N. Chen, M. Shimojo, P. Svensson, and L. Arendt-Nielsen, “Brain dynamics of scalp evoked potentials and current source densities to repetitive (5-pulse train) painful stimulation of skin and muscle: central correlate of temporal summation,” Brain Topography, vol. 13, no. 1, pp. 59–72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. L. A. Henderson, S. C. Gandevia, and V. G. Macefield, “Gender differences in brain activity evoked by muscle and cutaneous pain: a retrospective study of single-trial fMRI data,” NeuroImage, vol. 39, no. 4, pp. 1867–1876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. D. M. Niddam, T. Graven-Nielsen, L. Arendt-Nielsen, and A. C. N. Chen, “Non-painful and painful surface and intramuscular electrical stimulation at the thenar and hypothenar sites: differential cerebral dynamics of early to late latency SEPs,” Brain Topography, vol. 13, no. 4, pp. 283–292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. D. M. Niddam, T. C. Yeh, Y. T. Wu et al., “Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation,” NeuroImage, vol. 17, no. 3, pp. 1437–1450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Shimojo, P. Svensson, L. Arendt-Nielsen, and A. C. N. Chen, “Dynamic brain topography of somatosensory evoked potentials and equivalent dipoles in response to graded painful skin and muscle stimulation,” Brain Topography, vol. 13, no. 1, pp. 43–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Svensson, A. Beydoun, T. J. Morrow, and K. L. Casey, “Non-painful and painful stimulation of human skin and muscle: analysis of cerebral evoked potentials,” Electroencephalography and Clinical Neurophysiology—Evoked Potentials, vol. 104, no. 4, pp. 343–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. A. U. Asghar, G. Green, M. F. Lythgoe, G. Lewith, and H. MacPherson, “Acupuncture needling sensation: the neural correlates of deqi using fMRI,” Brain Research, vol. 1315, pp. 111–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. K. K. S. Hui, J. Liu, N. Makris et al., “Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects,” Human Brain Mapping, vol. 9, no. 1, pp. 13–25, 2000. View at Publisher · View at Google Scholar
  55. K. K. S. Hui, O. Marina, J. D. Claunch et al., “Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects,” Brain Research, vol. 1287, pp. 84–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. T. Wu, J. M. Sheen, K. H. Chuang et al., “Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture,” NeuroImage, vol. 16, no. 4, pp. 1028–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Li, L. Huang, R. T. F. Cheung, S. R. Liu, Q. Y. Ma, and E. S. Yang, “Cortical activations upon stimulation of the sensorimotor-implicated acupoints,” Magnetic Resonance Imaging, vol. 22, no. 5, pp. 639–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Li, C. R. Jack, and E. S. Yang, “An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients,” Journal of Magnetic Resonance Imaging, vol. 24, no. 5, pp. 1018–1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. D. Dougherty, J. Kong, M. Webb, A. A. Bonab, A. J. Fischman, and R. L. Gollub, “A combined [11C]diprenorphine PET study and fMRI study of acupuncture analgesia,” Behavioural Brain Research, vol. 193, no. 1, pp. 63–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Li, H. Liu, Y. Z. Li et al., “The human brain response to acupuncture on same-meridian acupoints: evidence from an fMRI study,” Journal of Alternative and Complementary Medicine, vol. 14, no. 6, pp. 673–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Li and E. S. Yang, “An fMRI study of acupuncture-induced brain activation of aphasia stroke patients,” Complementary Therapies in Medicine, vol. 19, supplement 1, pp. S49–S59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Shukla, A. Torossian, J. R. Duann, and A. Leung, “The analgesic effect of electroacupuncture on acute thermal pain perception-a central neural correlate study with fMRI,” Molecular Pain, vol. 7, article 45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Fang, T. Krings, J. Weidemann, I. G. Meister, and A. Thron, “Functional MRI in healthy subjects during acupuncture: different effects of needle rotation in real and false acupoints,” Neuroradiology, vol. 46, no. 5, pp. 359–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. M. Wang, R. T. Constable, F. S. Tokoglu, D. A. Weiss, D. Freyle, and Z. N. Kain, “Acupuncture-induced blood oxygenation level-dependent signals in awake and anesthetized volunteers: a pilot study,” Anesthesia and Analgesia, vol. 105, no. 2, pp. 499–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Wang, L. Liu, X. Zhi et al., “Study on the regulatory effect of electro-acupuncture on Hegu point (LI4) in cerebral response with functional magnetic resonance imaging,” Chinese Journal of Integrative Medicine, vol. 13, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Zhou and J. Jia, “Effect of acupuncture given at the HT 7, ST 36, ST 40 and KI 3 acupoints on various parts of the brains of Alzheimer's disease patients,” Acupuncture and Electro-Therapeutics Research, vol. 33, no. 1-2, pp. 9–17, 2008. View at Scopus
  67. S. U. Park, A. S. Shin, G. H. Jahng, S. K. Moon, and J. M. Park, “Effects of scalp acupuncture versus upper and lower limb acupuncture on signal activation of blood oxygen level dependent (BOLD) fMRI of the brain and somatosensory cortex,” Journal of Alternative and Complementary Medicine, vol. 15, no. 11, pp. 1193–1200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. H. Zhang, J. Li, X. D. Cao, and X. Y. Feng, “Can electroacupuncture affect the sympathetic activity, estimated by skin temperature measurement? A functional MRI study on the effect of needling at GB 34 and GB 39 on patients with pain in the lower extremity,” Acupuncture and Electro-Therapeutics Research, vol. 34, no. 3-4, pp. 151–164, 2009. View at Scopus
  69. S. Yeo, I. H. Choe, M. Van Den Noort, P. Bosch, and S. Lim, “Consecutive acupuncture stimulations lead to significantly decreased neural responses,” Journal of Alternative and Complementary Medicine, vol. 16, no. 4, pp. 481–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Yeo, S. Lim, I.-H. Choe et al., “Acupuncture stimulation on gb34 activates neural responses associated with parkinson's disease,” CNS Neuroscience and Therapeutics, vol. 18, no. 9, pp. 781–790, 2012. View at Publisher · View at Google Scholar
  71. J. Kong, F. Li, R. Li et al., “A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods,” Journal of Alternative and Complementary Medicine, vol. 8, no. 4, pp. 411–419, 2002. View at Scopus
  72. K. Li, B. Shan, J. Xu et al., “Changes in fMRI in the human brain related to different durations of manual acupuncture needling,” Journal of Alternative and Complementary Medicine, vol. 12, no. 7, pp. 615–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Napadow, N. Kettner, J. Liu et al., “Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome,” Pain, vol. 130, no. 3, pp. 254–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. H. MacPherson, G. Green, A. Nevado et al., “Brain imaging of acupuncture: comparing superficial with deep needling,” Neuroscience Letters, vol. 434, no. 1, pp. 144–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Napadow, R. Dhond, K. Park et al., “Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture,” NeuroImage, vol. 47, no. 1, pp. 289–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Napadow, R. P. Dhond, J. Kim et al., “Brain encoding of acupuncture sensation—coupling on-line rating with fMRI,” NeuroImage, vol. 47, no. 3, pp. 1055–1065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Napadow, J. Lee, J. Kim et al., “Brain correlates of phasic autonomic response to acupuncture stimulation: an event-related fMRI study,” Human Brain Mapping, 2012. View at Publisher · View at Google Scholar
  78. S. S. Jeun, J. S. Kim, B. S. Kim et al., “Acupuncture stimulation for motor cortex activities: a 3T fMRI Study,” American Journal of Chinese Medicine, vol. 33, no. 4, pp. 573–578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Kong, R. L. Gollub, J. M. Webb, J. T. Kong, M. G. Vangel, and K. Kwong, “Test-retest study of fMRI signal change evoked by electroacupuncture stimulation,” NeuroImage, vol. 34, no. 3, pp. 1171–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. B. J. Na, G. H. Jahng, S. U. Park et al., “An fMRI study of neuronal specificity of an acupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its sham point,” Neuroscience Letters, vol. 464, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Bai, H. Yan, N. Li et al., “Neural specificity of acupuncture stimulation at pericardium 6: evidence from an fMRI study,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 71–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Q. Qiu, J. Claunch, J. Kong et al., “The effects of acupuncture on the brain networks for emotion and cognition: an observation of gender differences,” Brain Research, vol. 1362, pp. 56–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Sun, W. Qin, L. Jin, et al., “Impact of global normalization in fMRI acupuncture studies,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 467061, 22 pages, 2012. View at Publisher · View at Google Scholar
  84. J. H. Zhang, X. D. Cao, J. Li, W. J. Tang, H. Q. Liu, and X. Y. Feng, “Neuronal specificity of needling acupoints at same meridian: a control functional magnetic resonance imaging study with electroacupuncture,” Acupuncture and Electro-Therapeutics Research, vol. 32, no. 3-4, pp. 179–193, 2007. View at Scopus
  85. J. Fang, X. Wang, H. Liu, et al., “The limbic-prefrontal network modulated by electroacupuncture at CV4 and CV12,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 515893, 11 pages, 2012. View at Publisher · View at Google Scholar
  86. W. Huang, D. Pach, V. Napadow et al., “Characterizing acupuncture stimuli using brain imaging with fMRI—a systematic review and meta-analysis of the literature,” PLoS ONE, vol. 7, no. 4, Article ID e32960, 2012. View at Publisher · View at Google Scholar
  87. V. G. Macefield, S. Gandevia, and L. A. Henderson, “Discrete changes in cortical activation during experimentally induced referred muscle pain: a single-trial fMRI study,” Cerebral Cortex, vol. 17, no. 9, pp. 2050–2059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. L. Maeda, M. Ono, T. Koyama et al., “Human brain activity associated with painful mechanical stimulation to muscle and bone,” Journal of Anesthesia, vol. 25, no. 4, pp. 523–530, 2011. View at Publisher · View at Google Scholar
  89. G. K. Aguirre, E. Zarahn, and M. D'Esposito, “The inferential impact of global signal covariates in functional neuroimaging analyses,” NeuroImage, vol. 8, no. 3, pp. 302–306, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. A. E. Desjardins, K. A. Kiehl, and P. F. Liddle, “Removal of confounding effects of global signal in functional MRI analyses,” NeuroImage, vol. 13, no. 4, pp. 751–758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Gavrilescu, M. E. Shaw, G. W. Stuart, P. Eckersley, I. D. Svalbe, and G. F. Egan, “Simulation of the effects of global normalization procedures in functional MRI,” NeuroImage, vol. 17, no. 2, pp. 532–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Junghöfer, H. T. Schupp, R. Stark, and D. Vaitl, “Neuroimaging of emotion: empirical effects of proportional global signal scaling in fMRI data analysis,” NeuroImage, vol. 25, no. 2, pp. 520–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Beissner and C. Henke, “Methodological problems in fMRI studies on acupuncture: a critical review with special emphasis on visual and auditory cortex activations,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 607637, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” Neuroimage, vol. 62, no. 12, pp. 1216–1220, 2011. View at Publisher · View at Google Scholar
  95. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” NeuroImage, vol. 44, no. 3, pp. 893–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. G. K. Aguirre, E. Zarahn, and M. D'Esposito, “Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions,” NeuroImage, vol. 5, no. 3, pp. 199–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  97. J. L. R. Andersson, “How to estimate global activity independent of changes in local activity,” NeuroImage, vol. 6, no. 4, pp. 237–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. P. M. Macey, K. E. Macey, R. Kumar, and R. M. Harper, “A method for removal of global effects from fMRI time series,” NeuroImage, vol. 22, no. 1, pp. 360–366, 2004. View at Publisher · View at Google Scholar · View at Scopus