About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 340267, 10 pages
http://dx.doi.org/10.1155/2013/340267
Research Article

Inflammatory Regulation Effect and Action Mechanism of Anti-Inflammatory Effective Parts of Housefly (Musca domestica) Larvae on Atherosclerosis

1Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China
2School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China

Received 18 November 2012; Accepted 27 January 2013

Academic Editor: Kashmira Nanji

Copyright © 2013 Fu Jiang Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. P. Cherniack, “Bugs as drugs, part 1: insects. The “new” alternative medicine for the 21st century?” Alternative Medicine Review, vol. 15, no. 2, pp. 124–135, 2010. View at Scopus
  2. N. A. Ratcliffe, C. B. Mello, E. S. Garcia, T. M. Butt, and P. Azambuja, “Insect natural products and processes: new treatments for human disease,” Insect Biochemistry and Molecular Biology, vol. 41, no. 10, pp. 747–769, 2011.
  3. Y. Feng, M. Zhao, Z. He, Z. Chen, and L. Sun, “Research and utilization of medicinal insects in China,” Entomological Research, vol. 39, no. 5, pp. 313–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Shizhen, “Department of insect,” in Compendium of Materia Medica, L. Shenzhen, Ed., pp. 2289–2291, People's Medical Publishing House, Beijing, China, 1981.
  5. H. Ai, F. Wang, and C. Lei, “Antioxidant activities of protein-enriched fraction from the larvae of housefly, Musca domestica,” Natural Product Research, vol. 22, no. 6, pp. 507–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Hou, Y. Shi, P. Zhai, and G. Le, “Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica),” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 227–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. O. Park, J. H. Shin, W. K. Choi, B. S. Park, J. S. Oh, and A. Jang, “Antibacterial activity of house fly-maggot extracts against MRSA (Methicillin-resistant Staphylococcus aureus) and VRE (Vancomycin-resistant enterococci),” Journal of Environmental Biology, vol. 31, no. 5, pp. 865–871, 2010. View at Scopus
  8. X. Feng, G. Cheng, S. Y. Chen, H. Yang, and W. Huang, “Evaluation of the burn healing properties of oil extraction from housefly larva in mice,” Journal of Ethnopharmacology, vol. 130, no. 3, pp. 586–592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. J. Chu, X. B. Jin, and J. Y. Zhu, “Housefly maggots (Musca domestica) protein-enriched fraction/extracts (PE) inhibit lipopolysaccharide-induced atherosclerosis pro-inflammatory responses,” Journal of Atherosclerosis and Thrombosis, vol. 18, no. 4, pp. 282–290, 2011. View at Publisher · View at Google Scholar
  10. R. W. Pemberton, “Insects and other arthropods used as drugs in Korean traditional medicine,” Journal of Ethnopharmacology, vol. 65, no. 3, pp. 207–216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, X. Dang, X. Zheng, J. Wang, and W. Zhang, “Effect of extracted housefly pupae peptide mixture on chilled pork preservation,” Journal of Food Science, vol. 75, no. 6, pp. M383–M388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Cicková, M. Kozánek, I. Morávek, and P. Takác, “A behavioral method for separation of house fly (Diptera: Muscidae) larvae from processed pig manure,” Journal of Economic Entomology, vol. 105, no. 1, pp. 62–66, 2012. View at Publisher · View at Google Scholar
  13. X. Lu, J. Shen, X. Jin et al., “Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli,” Applied Microbiology and Biotechnology, vol. 95, no. 4, pp. 939–945, 2012. View at Publisher · View at Google Scholar
  14. R. Ross, “Atherosclerosis—an inflammatory disease,” New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar
  15. P. Libby, Y. Okamoto, V. Z. Rocha, and E. Folco, “Inflammation in atherosclerosis: transition from theory to practice,” Circulation Journal, vol. 74, no. 2, pp. 213–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Maniar, C. L. Ellis, D. Asmuth, R. Pollard, and J. Rutledge, “HIV infection and atherosclerosis: evaluating the drivers of inflammation,” European Journal of Preventive Cardiology, 2012. View at Publisher · View at Google Scholar
  17. F. C. Gibson, T. Ukai, and C. A. Genco, “Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2041–2059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Y. A. Yapi, D. Gnakri, S. L. Niamke, and L. P. Kouame, “Purification and biochemical characterization of a specific β"- glucosidase from the digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum,” Journal of Insect Science, vol. 9, article 4, pp. 1–13, 2009. View at Scopus
  19. E. Ling, X. J. Rao, J. Q. Ao, and X. Q. Yu, “Purification and characterization of a small cationic protein from the tobacco hornworm Manduca sexta,” Insect Biochemistry and Molecular Biology, vol. 39, no. 4, pp. 263–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Peng, J. Lin, and D. Wei, “Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2,” Applied Biochemistry and Biotechnology, vol. 162, no. 3, pp. 733–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Tsumoto, M. Umetsu, I. Kumagai, D. Ejima, J. S. Philo, and T. Arakawa, “Role of arginine in protein refolding, solubilization, and purification,” Biotechnology Progress, vol. 20, no. 5, pp. 1301–1308, 2004. View at Scopus
  22. L. R. Masterson, N. Bortone, T. Yu et al., “Expression and purification of isotopically labeled peptide inhibitors and substrates of cAMP-dependant protein kinase A for NMR analysis,” Protein Expression and Purification, vol. 64, no. 2, pp. 231–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. I. Medeiros, R. C. Gandolfi, A. Secatto et al., “11-Oxoaerothionin isolated from the marine sponge Aplysina fistularis shows anti-inflammatory activity in LPS-stimulated macrophages,” Immunopharmacol and Immunotoxicol, vol. 34, no. 6, pp. 919–924, 2012. View at Publisher · View at Google Scholar
  24. B. Hernández-Ledesma, C. C. Hsieh, and B. O. de Lumen, “Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 803–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Kim, J. H. Park, K. H. Kim, W. R. Lee, K. S. Kim, and K. K. Park, “Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions,” Journal of Atherosclerosis and Thrombosis, vol. 18, no. 12, pp. 1117–1126, 2011. View at Publisher · View at Google Scholar
  26. Y. Liang, J. X. Wang, X. F. Zhao, X. J. Du, and J. F. Xue, “Molecular cloning and characterization of cecropin from the housefly (Musca domestica), and its expression in Escherichia coli,” Developmental and Comparative Immunology, vol. 30, no. 3, pp. 249–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Svenson, V. Vergote, R. Karstad, C. Burvenich, J. S. Svendsen, and B. de Spiegeleer, “Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 3, pp. 1032–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Gareus, E. Kotsaki, S. Xanthoulea et al., “Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis,” Cell Metabolism, vol. 8, no. 5, pp. 372–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. G. Baker, M. S. Hayden, and S. Ghosh, “NF-κB, inflammation, and metabolic disease,” Cell Metabolism, vol. 13, no. 1, pp. 11–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Zoysa, C. Nikapitiya, C. Oh et al., “Molecular evidence for the existence of lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus),” Fish and Shellfish Immunology, vol. 28, no. 5-6, pp. 754–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Hoffmann, “The immune response of Drosophila,” Nature, vol. 426, no. 6962, pp. 33–38, 2003. View at Publisher · View at Google Scholar · View at Scopus