About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 340645, 8 pages
http://dx.doi.org/10.1155/2013/340645
Research Article

The Ethanol Extract of Zingiber zerumbet Attenuates Streptozotocin-Induced Diabetic Nephropathy in Rats

1Department of Internal Medicine, Pao Chien Hospital, Pingtung City, Pingtung County 90064, Taiwan
2Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Yanpu Township, Pingtung County 90701, Taiwan
3School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan

Received 2 October 2012; Revised 17 December 2012; Accepted 7 January 2013

Academic Editor: Arndt Büssing

Copyright © 2013 Thing-Fong Tzeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Rossing, “Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history,” Current Diabetes Reports, vol. 6, no. 6, pp. 479–483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. E. Mogensen, W. F. Keane, P. H. Bennett et al., “Prevention of diabetic renal disease with special reference to microalbuminuria,” The Lancet, vol. 346, no. 8982, pp. 1080–1084, 1995. View at Scopus
  3. H. Kawachi, N. Miyauchi, K. Suzuki, D. H. Gi, M. Orikasa, and F. Shimizu, “Role of podocyte slit diaphragm as a filtration barrier,” Nephrology, vol. 11, no. 4, pp. 274–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Nerlich and E. Schleicher, “Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions,” The American Journal of Pathology, vol. 139, no. 4, pp. 889–899, 1991. View at Scopus
  5. M. E. Cooper, P. Mundel, and G. Boner, “Role of nephrin in renal disease including diabetic nephropathy,” Seminars in Nephrology, vol. 22, no. 5, pp. 393–398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Narita, J. Koshimura, K. Suzuki et al., “Effects of short-term glycemic control, low protein diet and administration of enalapril on renal hemodynamics and protein permselectivity in type 2 diabetic patients with microalbuminuria,” The Tohoku Journal of Experimental Medicine, vol. 189, no. 2, pp. 117–133, 1999. View at Scopus
  7. S. M. Nalawade, A. P. Sagare, C. Y. Lee, C. L. Kao, and H. S. Tsay, “Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization,” Botanical Bulletin of Academia Sinica, vol. 44, no. 2, pp. 79–98, 2003. View at Scopus
  8. N. J. Yob, S. M. Jofrry, M. M. R. M. M. Affandi, L. K. Teh, M. Z. Salleh, and Z. A. Zakaria, “Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 543216, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Langner, S. Greifenberg, and J. Gruenwald, “Ginger: history and use,” Advances in Therapy, vol. 15, no. 1, pp. 25–44, 1998.
  10. R. D. Altman and K. C. Marcussen, “Effects of a ginger extract on knee pain in patients with osteoarthritis,” Arthritis Rheum, vol. 44, no. 11, pp. 2531–2538, 2001.
  11. M. R. Sulaiman, T. A. S. Tengku Mohamad, W. M. Shaik Mossadeq et al., “Antinociceptive activity of the essential oil of Zingiber zerumbet,” Planta Medica, vol. 76, no. 2, pp. 107–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Jantan, I. A. A. Rafi, and J. Jalil, “Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants,” Phytomedicine, vol. 12, no. 1-2, pp. 88–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Tan, R. Pippen, R. Yusof, N. S. Abdul Rahman, H. Ibrahim, and N. Z. Khalid, “Screening of selected Zingiberaceae extracts for dengue-2 virus protease inhibitory activities,” Sunway Academic Journal, vol. 3, pp. 1–7, 2006.
  14. R. Husen, A. H. L. Pihie, and M. Nallappan, “Screening for antihyperglycaemic activity in several local herbs of Malaysia,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 205–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. J. Chang, T. F. Tzeng, Y. S. Chang, and I. M. Liu, “Beneficial impact of Zingiber zerumbet on insulin sensitivity in fructose-fed rats,” Planta Medica, vol. 78, no. 4, pp. 317–325, 2012. View at Publisher · View at Google Scholar
  16. S. Dronavalli, I. Duka, and G. L. Bakris, “The pathogenesis of diabetic nephropathy,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 8, pp. 444–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. J. Chang, T. F. Tzeng, S. S. Liou, Y. S. Chang, and I. M. Liu, “Acute and 28-day subchronic oral toxicity of an ethanol extract of Zingiber zerumbet (L.) Smith in rodents,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 608284, 11 pages, 2012. View at Publisher · View at Google Scholar
  18. C. J. Chang, T. F. Tzeng, S. S. Liou, Y. S. Chang, and I. M. Liu, “Absence of genotoxic and mutagenic effects of Zingiber zerumbet (L.) Smith (Zingiberaceae) extract,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 406296, 7 pages, 2012. View at Publisher · View at Google Scholar
  19. A. A. Alhaider, H. M. Korashy, M. M. Sayed-Ahmed, M. Mobark, H. Kfoury, and M. A. Mansour, “Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression,” Chemico-Biological Interactions, vol. 192, no. 3, pp. 233–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Kanetsuna, K. Hirano, M. Nagata et al., “Characterization of diabetic nephropathy in a transgenic model of hypoinsulinemic diabetes,” American Journal of Physiology—Renal Physiology, vol. 291, no. 6, pp. F1315–F1322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. I. M. Liu, T. F. Tzeng, S. S. Liou, and C. J. Chang, “The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription,” Journal of Ethnopharmacology, vol. 124, no. 2, pp. 211–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Siu, J. Saha, W. E. Smoyer, K. A. Sullivan, and F. C. Brosius III, “Reduction in podocyte density as a pathologic feature in early diabetic nephropathy in rodents: prevention by lipoic acid treatment,” BMC Nephrology, vol. 7, article 6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Boyle, I. P. Salt, and G. A. McKay, “Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target,” Diabetic Medicine, vol. 27, no. 10, pp. 1097–1106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. I. Welsh and M. A. Saleem, “Nephrin—signature molecule of the glomerular podocyte?” Journal of Pathology, vol. 220, no. 3, pp. 328–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. D. Piscione and C. Licht, “Genetics of proteinuria: an overview of gene mutations associated with nonsyndromic proteinuric glomerulopathies,” Advances in Chronic Kidney Disease, vol. 18, no. 4, pp. 273–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Fan, J. Ding, J. Zhang, N. Guan, and J. Deng, “Effect of the knockdown of podocin mRNA on nephrin and α-actinin in mouse podocyte,” Experimental Biology and Medicine, vol. 229, no. 9, pp. 964–970, 2004. View at Scopus
  27. M. J. Lee, D. Feliers, M. M. Mariappan et al., “A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy,” American Journal of Physiology—Renal Physiology, vol. 292, no. 2, pp. F617–F627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Gruzman, G. Babai, and S. Sasson, “Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations,” The Review of Diabetic Studies, vol. 6, no. 1, pp. 13–36, 2009. View at Publisher · View at Google Scholar · View at Scopus