About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 382927, 7 pages
http://dx.doi.org/10.1155/2013/382927
Research Article

Antimicrobial Potential and Chemical Characterization of Serbian Liverwort (Porella arboris-vitae): SEM and TEM Observations

1Dipartimento di Scienze degli Alimenti, Università degli Studi di Bologna, Sede di Cesena, Piazza G. Goidanich 60, 47023 Cesena, Italy
2Applied Microbiology laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India
3Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

Received 29 October 2012; Revised 6 December 2012; Accepted 6 December 2012

Academic Editor: Vincenzo De Feo

Copyright © 2013 Amit Kumar Tyagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Tyagi, A. Malik, D. Gottardi, and M. E. Guerzoni, “Essential oil vapour and negative air ions: a novel tool for food preservation,” Trends in Food Science & Technology, vol. 26, no. 2, pp. 99–113, 2012.
  2. P. A. Paranagama, K. H. T. Abeysekera, K. Abeywickrama, and L. Nugaliyadde, “Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link isolated from stored rice,” Letters in Applied Microbiology, vol. 37, no. 1, pp. 86–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Tyagi and A. Malik, “Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms,” Food Control, vol. 22, no. 11, pp. 1707–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Tyagi and A. Malik, “Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms,” Food Chemistry, vol. 126, no. 1, pp. 228–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Asakawa, “Liverworts-potential source of medicinal compounds,” Medicinal Aromatic Plants, vol. 1, article e114, p. 3, 2012.
  6. J. Shiina and S. Nishiyama, “The first total synthesis of acutifolone A, a pinguisane-type sesquiterpenoid isolated from the Japanese liverwort Porella acutifolia subsp. tosana,” Tetrahedron Letters, vol. 46, no. 45, pp. 7683–7686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Glime, Bryophyte Ecology. Volume 5: Uses, Michigan Technological University and the International Association of Bryologists, 2007.
  8. M. Toyota, A. Ueda, and Y. Asakawa, “Sesquiterpenoids from the liverwort Porella acutifolia subsp. Tosana,” Phytochemistry, vol. 30, no. 2, pp. 567–573, 1991. View at Scopus
  9. D. N. Quang and Y. Asakawa, “Chemical constituents of the Vietnamese liverwort Porella densifolia,” Fitoterapia, vol. 81, no. 6, pp. 659–661, 2010.
  10. Y. Asakawa, “Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts,” Phytochemistry, vol. 56, no. 3, pp. 297–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Asakawa, “Phytochemistry of bryophytes: biologically active terpenoids and aromatic compounds from liverworts,” in Phytochemicals in Human Health Protection, Nutrition, and Plant Defense, J. Romeo, Ed., pp. 319–342, Kluwer Academic, New York, NY, USA, 1999.
  12. National Committee for Clinical Laboratory Standards (NCCLS), “Performance standards for antimicrobial susceptibility testing; 9th International Supplement,” Approved Standard M100-S9, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 1999.
  13. F. Nagashima, K. Suda, and Y. Asakawa, “Cadinane-type sesquiterpenoids from the liverwort Scapania undulata,” Phytochemistry, vol. 37, no. 5, pp. 1323–1325, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Dagli, “Three diterpenes from the liverwort Nardia scalaris,” KSU Journal of Science and Engineering, vol. 7, pp. 8–11, 2004.
  15. A. J. Barlow, B. J. Compton, U. Hertewich, S. D. Lorimer, and R. T. Weavers, “Sesquiterpenes from the New Zealand liverwort Lepidolaena hodgsoniae,” Journal of Natural Products, vol. 68, no. 6, pp. 825–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Paduch, M. Kandefer-Szerszeń, M. Trytek, and J. Fiedurek, “Terpenes: substances useful in human healthcare,” Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 315–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Komala, T. Ito, F. Nagashima, Y. Yagi, and Y. Asakawa, “Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae),” Journal of Natural Medicines, vol. 64, no. 4, pp. 417–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Bukvicki, D. Gottardi, M. Veljic, P. D. Marin, L. Vannini, and M. E. Guerzoni, “Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity,” Molecules, vol. 17, no. 6, pp. 6982–6995, 2012.
  19. R. Kramer and W. R. Abraham, “Volatile sesquiterpenes from fungi: what are they good for?” Phytochemistry, vol. 11, pp. 15–37, 2012.
  20. M. Veljic, A. Ćirić, M. Soković, P. Janaćković, and P. D. Marin, “Antibacterial and antifungal activity of the liverwort (Ptilidium pulcherrimum) methanol extract,” Archives of Biological Sciences, vol. 62, pp. 381–395, 2010.
  21. A. K. Tyagi and A. Malik, “Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens,” International Journal of Food Microbiology, vol. 143, no. 3, pp. 205–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Eaton, J. C. Fernandes, E. Pereira, M. E. Pintado, and F. X. Malcata, “Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus,” Ultramicroscopy, vol. 108, no. 10, pp. 1128–1134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Tyagi and A. Malik, “Morphostructural damage in food spoiling bacteria due to the lemon grass oil and its vapour: SEM, TEM and AFM investigations,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 692625, 12 pages, 2012. View at Publisher · View at Google Scholar
  24. I. M. Helander, H. L. Alakomi, K. Latva-Kala et al., “Characterization of the action of selected essential oil components on gram-negative bacteria,” Journal of Agricultural and Food Chemistry, vol. 46, no. 9, pp. 3590–3595, 1998. View at Scopus