About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 425707, 8 pages
http://dx.doi.org/10.1155/2013/425707
Research Article

Platelet Aggregation Pathway Network-Based Approach for Evaluating Compounds Efficacy

1Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
2Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
3Institute of Functional Nano, Soft Materials, Soochow University, Soochow Jiangsu 215123, China

Received 2 January 2013; Accepted 5 March 2013

Academic Editor: Rong Zeng

Copyright © 2013 Jiangyong Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Zerhouni, “Translational research: moving discovery to practice,” Clinical Pharmacology and Therapeutics, vol. 81, no. 1, pp. 126–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. X. Zhang and B. F. Ouellette, “Pandora, a pathway and network discovery approach based on common biological evidence,” Bioinformatics, vol. 26, no. 4, pp. 529–535, 2010. View at Scopus
  3. R. A. Pache, A. Zanzoni, J. Naval, J. M. Mas, and P. Aloy, “Towards a molecular characterisation of pathological pathways,” FEBS Letters, vol. 582, no. 8, pp. 1259–1265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Kitano, “Computational systems biology,” Nature, vol. 420, no. 6912, pp. 206–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Keith, A. A. Borisy, and B. R. Stockwell, “Multicomponent therapeutics for networked systems,” Nature Reviews Drug Discovery, vol. 4, no. 1, pp. 71–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. C. Butcher, E. L. Berg, and E. J. Kunkel, “Systems biology in drug discovery,” Nature Biotechnology, vol. 22, no. 10, pp. 1253–1259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Kohl, E. J. Crampin, T. A. Quinn, and D. Noble, “Systems biology: an approach,” Clinical Pharmacology and Therapeutics, vol. 88, no. 1, pp. 25–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Henney, “Who will take up the gauntlet?: challenges and opportunities for systems biology and drug discovery,” EMBO Reports, vol. 10, no. 1, pp. S9–S13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. K. Arrell and A. Terzic, “Network systems biology for drug discovery,” Clinical Pharmacology and Therapeutics, vol. 88, no. 1, pp. 120–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. C. Janga and A. Tzakos, “Structure and organization of drug-target networks: insights from genomic approaches for drug discovery,” Molecular BioSystems, vol. 5, no. 12, pp. 1536–1548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery,” Nature Chemical Biology, vol. 4, no. 11, pp. 682–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. E. Schadt, S. H. Friend, and D. A. Shaywitz, “A network view of disease and compound screening,” Nature Reviews Drug Discovery, vol. 8, no. 4, pp. 286–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Agoston, P. Csermely, and S. Pongor, “Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example,” Physical Review E, vol. 71, no. 5, Article ID 051909, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Li, X. Li, C. Li et al., “A network-based multi-target computational estimation scheme for anticoagulant activities of compounds,” PLoS ONE, vol. 6, no. 3, Article ID e14774, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Z. Xiang, L. Y. Kang, X. M. Gao, H. C. Shang, J. H. Zhang, and B. L. Zhang, “Strategies for antiplatelet targets and agents,” Thrombosis Research, vol. 123, no. 1, pp. 35–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Broos, S. F. De Meyer, H. B. Feys, et al., “Blood platelet biochemistry,” Thrombosis Research, vol. 129, no. 3, pp. 245–249, 2012.
  17. S. P. Jackson and S. M. Schoenwaelder, “Antiplatelet therapy: in search of the ‘magic bullet’,” Nature Reviews Drug Discovery, vol. 2, no. 10, pp. 775–789, 2003. View at Scopus
  18. Y. Z. Xiang, Y. Xia, X. M. Gao, H. C. Shang, L. Y. Kang, and B. L. Zhang, “Platelet activation, and antiplatelet targets and agents: current and novel strategies,” Drugs, vol. 68, no. 12, pp. 1647–1664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Sangkuhl, A. R. Shuldiner, T. E. Klein, and R. B. Altman, “Platelet aggregation pathway,” Pharmacogenetics and Genomics, vol. 21, no. 8, pp. 516–521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Joshi-Tope, M. Gillespie, I. Vastrik et al., “Reactome: a knowledgebase of biological pathways,” Nucleic Acids Research, vol. 33, pp. D428–D432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa, “KEGG for representation and analysis of molecular networks involving diseases and drugs,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp896, pp. D355–D360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J. Reifman, “DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0,” Chemistry Central Journal, vol. 2, no. 1, article 18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Park, J. Lee, and S. Lee, “Critical assessment of the automated AutoDock as a new docking tool for virtual screening,” Proteins: Structure, Function and Genetics, vol. 65, no. 3, pp. 549–554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Latora and M. Marchiori, “Efficient behavior of small-world networks,” Physical Review Letters, vol. 87, no. 19, Article ID 198701, pp. 1–4, 2001. View at Scopus
  25. P. Csermely, V. Ágoston, and S. Pongor, “The efficiency of multi-target drugs: the network approach might help drug design,” Trends in Pharmacological Sciences, vol. 26, no. 4, pp. 178–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Spiro, I. A. Kovacs, and P. Csermely, “Drug-therapy networks and the prediction of novel drug targets,” Journal of Biology, vol. 7, no. 6, article 20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Xu, “New concepts and approaches for drug discovery based on traditional Chinese medicine,” Drug Discovery Today, vol. 3, no. 3, pp. 247–253, 2006. View at Publisher · View at Google Scholar · View at Scopus