About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 439690, 12 pages
http://dx.doi.org/10.1155/2013/439690
Research Article

Metabolomic Study of Collagen-Induced Arthritis in Rats and the Interventional Effects of Huang-Lian-Jie-Du-Tang, a Traditional Chinese Medicine

1School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, China
2College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
3School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, China

Received 18 September 2012; Revised 28 January 2013; Accepted 28 January 2013

Academic Editor: Wei Jia

Copyright © 2013 Rongcai Yue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 31, no. 3, pp. 315–324, 1988. View at Scopus
  2. D. L. Scott, F. Wolfe, and T. W. J. Huizinga, “Rheumatoid arthritis,” The Lancet, vol. 376, no. 9746, pp. 1094–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. van Maanen, M. C. Lebre, T. van der Poll et al., “Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice,” Arthritis and Rheumatism, vol. 60, no. 1, pp. 114–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Q. Lai, A. W. Irwan, H. H. Goh, A. J. Melendez, I. B. McInnes, and B. P. Leung, “Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis,” Journal of Immunology, vol. 183, no. 3, pp. 2097–2103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kelchtermans, L. Geboes, T. Mitera, D. Huskens, G. Leclercq, and P. Matthys, “Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis,” Annals of the Rheumatic Diseases, vol. 68, no. 5, pp. 744–750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. G. M. van Baarsen, C. A. Wijbrandts, T. C. G. Timmer, T. C. T. M. van der Pouw Kraan, P. P. Tak, and C. L. Verweij, “Synovial tissue heterogeneity in rheumatoid arthritis in relation to disease activity and biomarkers in peripheral blood,” Arthritis and Rheumatism, vol. 62, no. 6, pp. 1602–1607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. C. Willis, A. M. Gizinski, N. K. Banda et al., “N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis,” Journal of Immunology, vol. 186, no. 7, pp. 4396–4404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Augello, R. Tasso, S. M. Negrini, R. Cancedda, and G. Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1175–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Salliot and D. van der Heijde, “Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research,” Annals of the Rheumatic Diseases, vol. 68, no. 7, pp. 1100–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Alcorn, S. Saunders, and R. Madhok, “Benefit-risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing,” Drug Safety, vol. 32, no. 12, pp. 1123–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Schaffer, T. Florin, C. Eagle et al., “Risk of serious NSAID-related gastrointestinal events during long-term exposure: a systematic review,” Medical Journal of Australia, vol. 185, no. 9, pp. 501–506, 2006. View at Scopus
  12. P. A. Scott, G. H. Kingsley, C. M. Smith, E. H. Choy, and D. L. Scott, “Non-steroidal anti-inflammatory drugs and myocardial infarctions: comparative systematic review of evidence from observational studies and randomised controlled trials,” Annals of the Rheumatic Diseases, vol. 66, no. 10, pp. 1296–1304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Gieger, L. Geistlinger, E. Altmaier et al., “Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum,” PLoS Genetics, vol. 4, no. 11, Article ID e1000282, 2008.
  14. A. M. Weljie, R. Dowlatabadi, B. J. Miller, H. J. Vogel, and F. R. Jirik, “An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy,” Journal of Proteome Research, vol. 6, no. 9, pp. 3456–3464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. B. Lauridsen, H. Bliddal, R. Christensen et al., “1H NMR spectroscopy-based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients,” Journal of Proteome Research, vol. 9, no. 9, pp. 4545–4553, 2010. View at Publisher · View at Google Scholar
  16. X. Li, S. Yang, Y. Qiu et al., “Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis,” Metabolomics, vol. 6, no. 1, pp. 109–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Theodoridis, H. G. Gika, and I. D. Wilson, “LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics,” Trends in Analytical Chemistry, vol. 27, no. 3, pp. 251–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Nordström, G. O'Maille, C. Qin, and G. Siuzdak, “Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum,” Analytical Chemistry, vol. 78, no. 10, pp. 3289–3295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Dou, L. Liu, P. Jiang, W. Zhang, and R. Liu, “LC-DAD and LC-ESI-MS chromatographic fingerprinting and quantitative analysis for evaluation of the quality of Huang-Lian-Jie-Du-Tang,” Chromatographia, vol. 69, no. 7-8, pp. 659–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Hu, P. Jiang, S. Wang et al., “Plasma pharmacochemistry based approach to screening potential bioactive components in Huang-Lian-Jie-Du-Tang using high performance liquid chromatography coupled with mass spectrometric detection,” Journal of Ethnopharmacology, vol. 141, no. 2, pp. 728–735, 2012. View at Publisher · View at Google Scholar
  21. H. Zeng, S. Dou, J. Zhao et al., “The inhibitory activities of the components of Huang-Lian-Jie-Du-Tang (HLJDT) on eicosanoid generation via lipoxygenase pathway,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 561–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Zeng, X. Liu, S. Dou et al., “Huang-Lian-Jie-Du-Tang exerts anti-inflammatory effects in rats through inhibition of nitric oxide production and eicosanoid biosynthesis via the lipoxygenase pathway,” Journal of Pharmacy and Pharmacology, vol. 61, no. 12, pp. 1699–1707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Yue, L. Zhao, Y. Hu et al., “Rapid-resolution liquid chromatography TOF-MS for urine metabolomic analysis of collagen-induced arthritis in rats and its applications,” Journal of Ethnopharmacology, vol. 145, no. 2, pp. 465–475, 2013. View at Publisher · View at Google Scholar
  24. C. A. Hitchon and H. S. El-Gabalawy, “Oxidation in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 6, no. 6, pp. 265–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Baskol, H. Demir, M. Baskol et al., “Investigation of protein oxidation and lipid peroxidation in patients with rheumatoid arthritis,” Cell Biochemistry and Function, vol. 24, no. 4, pp. 307–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. R. Griffiths, “Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease?” Autoimmunity Reviews, vol. 7, no. 7, pp. 544–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Hadjigogos, “The role of free radicals in the pathogenesis of rheumatoid arthritis,” Panminerva Medica, vol. 45, no. 1, pp. 7–13, 2003. View at Scopus
  28. L. Gail Darlington and T. W. Stone, “Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders,” British Journal of Nutrition, vol. 85, no. 3, pp. 251–269, 2001. View at Scopus
  29. E. A. Ostrakhovitch and I. B. Afanas'ev, “Oxidative stress in rheumatoid arthritis leukocytes: suppression by rutin and other antioxidants and chelators,” Biochemical Pharmacology, vol. 62, no. 6, pp. 743–746, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, “Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6858–6862, 1981. View at Scopus
  31. M. Grootveld and B. Halliwell, “Measurement of allantoin and uric acid in human body fluids. A potential index of free-radical reactions in vivo?” Biochemical Journal, vol. 243, no. 3, pp. 803–808, 1987. View at Scopus
  32. G. K. Glantzounis, E. C. Tsimoyiannis, A. M. Kappas, and D. A. Galaris, “Uric acid and oxidative stress,” Current Pharmaceutical Design, vol. 11, no. 32, pp. 4145–4151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Cohen, R. E. Aberdroth, and P. Hochstein, “Inhibition of free radical-induced DNA damage by uric acid,” FEBS Letters, vol. 174, no. 1, pp. 147–150, 1984. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. A. Davies, A. Sevanian, S. F. Muakkassah-Kelly, and P. Hochstein, “Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid,” Biochemical Journal, vol. 235, no. 3, pp. 747–754, 1986. View at Scopus
  35. N. Tastekin, N. Aydogdu, D. Dokmeci et al., “Protective effects of l-carnitine and alpha-lipoic acid in rats with adjuvant arthritis,” Pharmacological Research, vol. 56, no. 4, pp. 303–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. R. Bruce, A. J. Hoy, N. Turner et al., “Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance,” Diabetes, vol. 58, no. 3, pp. 550–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Le Borgne, A. Ben Mohamed, M. Logerot, E. Garnier, and J. Demarquoy, “Changes in carnitine octanoyltransferase activity induce alteration in fatty acid metabolism,” Biochemical and Biophysical Research Communications, vol. 409, no. 4, pp. 699–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Kllzllltunc, S. Cogalgil, and L. Cerrahoglu, “Carnitine and antioxidants levels in patients with rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 27, no. 6, pp. 441–445, 1998. View at Scopus
  39. S. Krähenbühl, B. Willer, P. Brühlmann, H. Hoppeler, and G. Stucki, “Carnitine homeostasis in patients with rheumatoid arthritis,” Clinica Chimica Acta, vol. 279, no. 1-2, pp. 35–45, 1999. View at Publisher · View at Google Scholar
  40. A. Bruusgaard and R. B. Andersen, “Effect of an intravenously administered bile acid (chenodeoxycholic acid) on rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 4, no. 3, pp. 169–173, 1975. View at Scopus
  41. Y. Dai, K. Miki, T. Fukuoka et al., “Suppression of neuropeptides' mRNA expression by herbal medicines in a rat model of peripheral inflammation,” Life Sciences, vol. 66, no. 1, pp. 19–29, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. S. C. Lin, C. C. Lin, F. J. Lu, Y. H. Lin, and C. H. Chen, “Protective and therapeutic effects of huanglian-jie-du-tang on hepatotoxin-induced liver injuries,” American Journal of Chinese Medicine, vol. 24, no. 3-4, pp. 219–229, 1996. View at Scopus