About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 471659, 11 pages
http://dx.doi.org/10.1155/2013/471659
Research Article

Aqueous Extract of Paeonia lactiflora and Paeoniflorin as Aggregation Reducers Targeting Chaperones in Cell Models of Spinocerebellar Ataxia 3

1Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
2Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan

Received 29 October 2012; Accepted 19 January 2013

Academic Editor: Carlo Ventura

Copyright © 2013 Kuo-Hsuan Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 as well as Huntington’s disease are a group of neurodegenerative disorders caused by expanded CAG repeats encoding a long polyglutamine (polyQ) tract in the respective proteins. Evidence has shown that the accumulation of intranuclear and cytoplasmic misfolded polyQ proteins leads to apoptosis and cell death. Thus suppression of aggregate formation is expected to inhibit a wide range of downstream pathogenic events in polyQ diseases. In this study, we established a high-throughput aggregation screening system using 293 ATXN3/Q75-GFP cells and applied this system to test the aqueous extract of Paeonia lactiflora (P. lactiflora) and its constituents. We found that the aggregation can be significantly prohibited by P. lactiflora and its active compound paeoniflorin. Meanwhile, P. lactiflora and paeoniflorin upregulated HSF1 and HSP70 chaperones in the same cell models. Both of them further reduced the aggregation in neuronal differentiated SH-SY5Y ATXN3/Q75-GFP cells. Our results demonstrate how P. lactiflora and paeoniflorin are likely to work on polyQ-aggregation reduction and provide insight into the possible working mechanism of P. lactiflora in SCA3. We anticipate our paper to be a starting point for screening more potential herbs for the treatment of SCA3 and other polyQ diseases.