About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 492039, 12 pages
http://dx.doi.org/10.1155/2013/492039
Research Article

Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate

1Palmer College of Chiropractic, Palmer Center for Chiropractic Research, Davenport, IA 52803, USA
2Department of Physical Therapy, University of Alberta, Edmonton, AB, Canada T6G 2R3

Received 15 September 2012; Revised 2 December 2012; Accepted 12 December 2012

Academic Editor: Vincenzo De Feo

Copyright © 2013 William R. Reed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Shekelle, A. H. Adams, M. R. Chassin, E. L. Hurwitz, and R. H. Brook, “Spinal manipulation for low-back pain,” Annals of Internal Medicine, vol. 117, no. 7, pp. 590–598, 1992. View at Scopus
  2. D. M. Eisenberg, R. B. Davis, S. L. Ettner et al., “Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey,” Journal of the American Medical Association, vol. 280, no. 18, pp. 1569–1575, 1998. View at Scopus
  3. M. G. Christensen, D. Kerkhoff, M. W. Kollasch, and L. Cohn, Job Analysis of Chiropractic, National Board of Chiropractic Examiners, Greeley, Colo, USA, 2005.
  4. T. F. Bergmann, “High-velocity low-amplitude manipulative techniques,” in Principles and Practice of Chiropractic, S. Haldeman, S. Dagenais, B. Budgell, N. Grunnet-Nilsson, P. D. Hooper, W. C. Meeker, et al., Eds., pp. 755–766, McGraw-Hill, New York, NY, USA, 2005.
  5. J. Triano, “The mechanics of spinal manipulation,” in Clinical Biomechanics of Spinal Manipulation, W. Herzog, Ed., pp. 92–190, Churchill Livingstone, New York, NY, USA, 2000.
  6. C. Goertz, K. A. Pohlman, R. D. Vining, J. W. Brantingham, and C. R. Long, “Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review,” Journal of Electromyography and Kinesiology, vol. 22, no. 5, pp. 670–691, 2012. View at Publisher · View at Google Scholar
  7. J. J. Triano, M. Descarreaux, and C. Dugas, “Biomechanics—review of approaches for performance training in spinal manipulation,” Journal of Electromyography and Kinesiology, vol. 22, no. 5, pp. 732–739, 2012. View at Publisher · View at Google Scholar
  8. M. Haas, E. Groupp, and D. F. Kraemer, “Dose-response for chiropractic care of chronic low back pain,” Spine Journal, vol. 4, no. 5, pp. 574–583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Haas, E. Groupp, M. Aickin et al., “Dose response for chiropractic care of chronic cervicogenic headache and associated neck pain: a randomized pilot study,” Journal of Manipulative and Physiological Therapeutics, vol. 27, no. 9, pp. 547–553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Pickar and Y. M. Kang, “Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control,” Journal of Manipulative and Physiological Therapeutics, vol. 29, no. 1, pp. 22–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. G. Pickar, P. S. Sung, Y. M. Kang, and W. Ge, “Response of lumbar paraspinal muscles spindles is greater to spinal manipulative loading compared with slower loading under length control,” Spine Journal, vol. 7, no. 5, pp. 583–595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vaillant, T. Edgecombe, C. R. Long, J. G. Pickar, and G. N. Kawchuk, “The effect of duration and amplitude of spinal manipulative therapy on the spinal stiffness,” Manual Therapy, vol. 17, no. 6, pp. 577–583, 2012. View at Publisher · View at Google Scholar
  13. C. J. Colloca, T. S. Keller, D. E. Harrison, R. J. Moore, R. Gunzburg, and D. D. Harrison, “Spinal manipulation force and duration affect vertebral movement and neuromuscular responses,” Clinical Biomechanics, vol. 21, no. 3, pp. 254–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Leach, The Chiropractic Theories, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2004.
  15. J. E. Bialosky, M. D. Bishop, D. D. Price, M. E. Robinson, and S. Z. George, “The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model,” Manual Therapy, vol. 14, no. 5, pp. 531–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. G. Pickar, “Neurophysiological effects of spinal manipulation,” Spine Journal, vol. 2, no. 5, pp. 357–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. I. M. Korr, The Neurobiologic Mechanisms in Manipulative Therapy, Plenum Press, New York, NY, USA, 1978.
  18. I. M. Korr, “Proprioceptors and somatic dysfunction,” Journal of the American Osteopathic Association, vol. 74, no. 7, pp. 638–650, 1975. View at Scopus
  19. J. G. Pickar, “An in vivo preparation for investigating neural responses to controlled loading of a lumbar vertebra in the anesthetized cat,” Journal of Neuroscience Methods, vol. 89, no. 2, pp. 87–96, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Brown, I. Engberg, and P. B. Matthews, “The relative sensitivity to vibration of muscle receptors of the cat,” Journal of Physiology, vol. 192, no. 3, pp. 773–800, 1967. View at Scopus
  21. J. G. Pickar and J. D. Wheeler, “Response of muscle proprioceptors to spinal manipulative-like loads in the anesthetized cat,” Journal of Manipulative and Physiological Therapeutics, vol. 24, no. 1, pp. 2–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Vaillant, J. G. Pickar, and G. N. Kawchuk, “Performance and reliability of a variable rate, force/displacement application system,” Journal of Manipulative and Physiological Therapeutics, vol. 33, no. 8, pp. 585–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. S. Bolton and C. T. Holland, “An in vivo method for studying afferent fibre activity from cervical paravertebral tissue during vertebral motion in anaesthetised cats,” Journal of Neuroscience Methods, vol. 85, no. 2, pp. 211–218, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. B. W. Hessell, W. Herzog, P. J. W. Conway, and M. C. McEwen, “Experimental measurement of the force exerted during spinal manipulation using the thompson technique,” Journal of Manipulative and Physiological Therapeutics, vol. 13, no. 8, pp. 448–453, 1990. View at Scopus
  25. W. Herzog, P. J. Conway, G. N. Kawchuk, Y. Zhang, and E. M. Hasler, “Forces exerted during spinal manipulative therapy,” Spine, vol. 18, no. 9, pp. 1206–1212, 1993. View at Scopus
  26. J. J. Triano, “Biomechanics of spinal manipulative therapy,” Spine Journal, vol. 1, no. 2, pp. 121–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Kirstukas and J. A. Backman, “Physician-applied contact pressure and table force response during unilateral thoracic manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 22, no. 5, pp. 269–279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. K. K. Haussler, C. E. Martin, and A. E. Hill, “Efficacy of spinal manipulation and mobilisation on trunk flexibility and stiffness in horses: a randomised clinical trial,” Equine Veterinary Journal, vol. 42, supplement s38, pp. 695–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Suter, W. Herzog, P. J. Conway, and Y. T. Zhang, “Reflex response associated with manipulative treatment of the thoracic spine,” Journal of the Neuromusculoskeletal System, vol. 2, no. 3, pp. 124–130, 1994.
  30. A. Ianuzzi and P. S. Khalsa, “High loading rate during spinal manipulation produces unique facet joint capsule strain patterns compared with axial rotations,” Journal of Manipulative and Physiological Therapeutics, vol. 28, no. 9, pp. 673–687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Nathan and T. S. Keller, “Measurement and analysis of the in vivo posteroanterior impulse response of the human thoracolumbar spine: a feasibility study,” Journal of Manipulative and Physiological Therapeutics, vol. 17, no. 7, pp. 431–441, 1994. View at Scopus
  32. A. W. Fuhr and D. B. Smith, “Accuracy of piezoelectric accelerometers measuring displacement of a spinal adjusting instrument,” Journal of Manipulative and Physiological Therapeutics, vol. 9, no. 1, pp. 15–21, 1986. View at Scopus
  33. D. B. Smith, A. W. Fuhr, and B. P. Davis, “Skin accelerometer displacement and relative bone movement of adjacent vertebrae in response to chiropractic percussion thrusts,” Journal of Manipulative and Physiological Therapeutics, vol. 12, no. 1, pp. 26–37, 1989. View at Scopus
  34. G. N. Kawchuk, W. Herzog, and E. M. Hasler, “Forces generated during spinal manipulative therapy of the cervical spine: a pilot study,” Journal of Manipulative and Physiological Therapeutics, vol. 15, no. 5, pp. 275–278, 1992. View at Scopus
  35. C. C. Hunt and D. Ottoson, “Initial burst of primary endings of isolated mammalian muscle spindles,” Journal of Neurophysiology, vol. 39, no. 2, pp. 324–330, 1976. View at Scopus
  36. A. A. White and M. M. Panjabi, Clinical Biomechanics of the Spine, J. B. Lippincott, Philadelphia, Pa, USA, 2nd edition, 1990.
  37. J. J. Triano, C. M. Rogers, S. Combs, D. Potts, and K. Sorrels, “Developing skilled performance of lumbar spine manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 25, no. 6, pp. 353–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. J. Triano, J. Bougie, C. Rogers et al., “Procedural skills in spinal manipulation: do prerequisites matter?” Spine Journal, vol. 4, no. 5, pp. 557–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Descarreaux, C. Dugas, K. Lalanne, M. Vincellete, and M. C. Normand, “Learning spinal manipulation: the importance of augmented feedback relating to various kinetic parameters,” Spine Journal, vol. 6, no. 2, pp. 138–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. G. Scaringe, D. Chen, and D. Ross, “The effects of augmented sensory feedback precision on the acquisition and retention of a simulated chiropractic task,” Journal of Manipulative and Physiological Therapeutics, vol. 25, no. 1, pp. 34–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. J. Triano, C. M. Rogers, S. Combs, D. Potts, and K. Sorrels, “Quantitative feedback versus standard training for cervical and thoracic manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 26, no. 3, pp. 131–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. B. A. Murphy, N. J. Dawson, and J. R. Slack, “Sacroiliac joint manipulation decreases the H-reflex,” Electromyography and Clinical Neurophysiology, vol. 35, no. 2, pp. 87–94, 1995. View at Scopus
  43. N. Orakifar, F. Kamali, S. Pirouzi, and F. Jamshidi, “Sacroiliac joint manipulation attenuates alpha-motoneuron activity in healthy women: a quasi-experimental study,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 1, pp. 56–61, 2012. View at Publisher · View at Google Scholar
  44. J. D. Dishman and R. Bulbulian, “Spinal reflex attenuation associated with spinal manipulation,” Spine, vol. 25, no. 19, pp. 2519–2525, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. D. Dishman and R. Bulbulian, “Comparison of effects of spinal manipulation and massage on motoneuron excitability,” Electromyography and Clinical Neurophysiology, vol. 41, no. 2, pp. 97–106, 2001. View at Scopus
  46. J. D. Dishman and J. Burke, “Spinal reflex excitability changes after cervical and lumbar spinal manipulation: a comparative study,” Spine Journal, vol. 3, no. 3, pp. 204–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Wood, J. E. Gregory, and U. Proske, “The influence of muscle spindle discharge on the human H reflex and the monosynaptic reflex in the cat,” Journal of Physiology, vol. 497, no. 1, pp. 279–290, 1996. View at Scopus
  48. L. M. Mendell, “Ia fiber architeture: implications for the functional role of presynaptic inhibition,” in Presynaptic Inhibition and Neural Control, P. Rudomin, R. Romo, and L. M. Mendell, Eds., pp. 259–270, Oxford University Press, New York, NY, USA, 1998.
  49. H. Hultborn and J. B. Nielsen, “Modulation of transmitter release from Ia afferents by their preceding activity—a “post-activation depression’,” in Presynaptic Inhibition and Neural Control, P. Rudomin, R. Romo, and L. M. Mendell, Eds., pp. 178–191, Oxford University Press, New York, NY, USA, 1998.
  50. P. E. Greenman, Principles of Manual Medicine, Williams & Wilkins, Baltimore, Md, USA, 1989.
  51. G. D. Cramer, N. R. Tuck, J. T. Knudsen et al., “Effects of side-posture positioning and side-posture adjusting on the lumbar zygapophysial joints as evaluated by magnetic resonance imaging: a before and after study with randomization,” Journal of Manipulative and Physiological Therapeutics, vol. 23, no. 6, pp. 380–394, 2000. View at Scopus
  52. R. G. Gillette, “A speculative argument for the coactivation of diverse somatic receptor populations by forceful chiropractic adjustments,” Manual Medicine, vol. 3, no. 1, pp. 1–14, 1987. View at Scopus