About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 564340, 9 pages
http://dx.doi.org/10.1155/2013/564340
Research Article

Improvement of Circadian Rhythm of Heart Rate Variability by Eurythmy Therapy Training

1Task Force Integrative Medicine in Pediatric Oncology, Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine (OHC), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
2Department of Medical Engineering, University of Applied Sciences Jena, 07745 Jena, Germany

Received 19 June 2012; Revised 29 November 2012; Accepted 18 December 2012

Academic Editor: Thomas Ostermann

Copyright © 2013 Georg Seifert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Seifert, P. H. Driever, K. Pretzer et al., “Effects of complementary eurythmy therapy on heart rate variability,” Complementary Therapies in Medicine, vol. 17, no. 3, pp. 161–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Boneva, M. J. Decker, E. M. Maloney et al., “Higher heart rate and reduced heart rate variability persist during sleep in chronic fatigue syndrome: a population-based study,” Autonomic Neuroscience, vol. 137, no. 1-2, pp. 94–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Burton, K. Rahman, Y. Kadota, A. Lloyd, and U. Vollmer-Conna, “Reduced heart rate variability predicts poor sleep quality in a case-control study of chronic fatigue syndrome,” Experimental Brain Research, vol. 204, no. 1, pp. 71–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. “Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
  5. H. V. Huikuri, J. S. Perkiömäki, R. Maestri, and G. D. Pinna, “Clinical impact of evaluation of cardiovascular control by novel methods of Heart rate dynamics,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1892, pp. 1223–1238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Cohen and J. A. Taylor, “Short-term cardiovascular oscillations in man: measuring and modelling the physiologies,” Journal of Physiology, vol. 542, part 3, pp. 669–683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. L. Eckberg, “The human respiratory gate,” Journal of Physiology, vol. 548, part 2, pp. 339–352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. Kleiger, J. P. Miller, and J. T. Bigger, “Decreased heart rate variability and its association with increased mortality after acute myocardial infarction,” American Journal of Cardiology, vol. 59, no. 4, pp. 256–262, 1987. View at Scopus
  9. M. Satyapriya, H. R. Nagendra, R. Nagarathna, and V. Padmalatha, “Effect of integrated yoga on stress and heart rate variability in pregnant women,” International Journal of Gynecology and Obstetrics, vol. 104, no. 3, pp. 218–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. An, R. Kulkarni, R. Nagarathna, and H. Nagendra, “Measures of heart rate variability in women following a meditation technique,” International Journal of Yoga, vol. 3, no. 1, pp. 6–9, 2010. View at Publisher · View at Google Scholar
  11. J. L. Kanitz, K. Pretzer, M. Reif, et al., “The impact of eurythmy therapy on fatigue in healthy adults—a controlled trial,” European Journal of Integrative Medicine, vol. 4, no. 3, pp. e289–e297, 2012.
  12. J. L. Kanitz, “Impact of eurythmy therapy on stress coping strategies and health-related quality of life,” European Journal of Integrative Medicine, vol. 1, no. 4, 256 pages, 2009. View at Publisher · View at Google Scholar
  13. B. A. Voss, S. Schulz, R. Schroeder, M. Baumert, and P. Caminal, “Methods derived from nonlinear dynamics for analysing heart rate variability,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1887, pp. 277–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Voss, H. Malberg, A. Schumann et al., “Baroreflex sensitivity, heart rate, and blood pressure variability in normal pregnancy,” American Journal of Hypertension, vol. 13, no. 11, pp. 1218–1225, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Voss, R. Schroeder, P. Caminal et al., “Segmented symbolic dynamics for risk stratification in patients with ischemic heart failure,” Cardiovascular Engineering and Technology, vol. 1, no. 4, pp. 290–298, 2010.
  16. A. Porta, S. Guzzetti, N. Montano et al., “Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 11, pp. 1282–1291, 2001. View at Publisher · View at Google Scholar
  17. Y. L. Ho, C. Lin, Y. H. Lin, and M. T. Lo, “The prognostic value of non-linear analysis of heart rate variability in patients with congestive heart failure-a pilot study of multiscale entropy,” PLoS ONE, vol. 6, no. 4, Article ID e18699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. K. Stein, A. A. Ehsani, P. P. Domitrovich, R. E. Kleiger, and J. N. Rottman, “Effect of exercise training on heart rate variability in healthy older adults,” American Heart Journal, vol. 138, no. 3, part 1, pp. 567–576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Voss, J. Kurths, H. J. Kleiner et al., “The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death,” Cardiovascular Research, vol. 31, no. 3, pp. 419–433, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. H. An, R. Kulkarni, R. Nagarathna, and H. R. Nagendra, “Measures of heart rate variability in women following a meditation technique,” International Journal of Yoga, vol. 1, no. 3, pp. 6–9, 2010.
  21. J. L. Kanitz, K. Pretzer, M. Reif, A. Voss, R. Brand, P. Warschburger, et al., “The impact of eurythmy therapy on stress coping strategies and health-related quality of life in healthy, moderately stressed adults,” Complementary Therapies in Medicine, vol. 19, no. 5, pp. 247–255, 2011. View at Publisher · View at Google Scholar
  22. C. C. Grant, M. Viljoen, D. C. van Rensburg, and P. S. Wood, “Heart rate variability assessment of the effect of physical training on autonomic cardiac control,” Annals of Noninvasive Electrocardiology, vol. 17, no. 3, pp. 219–229, 2012. View at Publisher · View at Google Scholar
  23. J. F. Brosschot, E. Van Dijk, and J. F. Thayer, “Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period,” International Journal of Psychophysiology, vol. 63, no. 1, pp. 39–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Rosengren, S. Hawken, S. Ôunpuu et al., “Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study,” The Lancet, vol. 364, no. 9438, pp. 953–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Patra and S. Telles, “Heart rate variability during sleep following the practice of cyclic meditation and supine rest,” Applied Psychophysiology Biofeedback, vol. 35, no. 2, pp. 135–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Leproult and E. Van Cauter, “Role of sleep and sleep loss in hormonal release and metabolism,” Endocrine Development, vol. 17, pp. 11–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Mormont, J. Waterhouse, P. Bleuzen et al., “Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status,” Clinical Cancer Research, vol. 6, no. 8, pp. 3038–3045, 2000. View at Scopus
  28. A. K. Pati, A. Parganiha, A. Kar, R. Soni, S. Roy, and V. Choudhary, “Alterations of the characteristics of the circadian rest-activity rhythm of cancer in-patients,” Chronobiology International, vol. 24, no. 6, pp. 1179–1197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Van Cauter, K. Spiegel, E. Tasali, and R. Leproult, “Metabolic consequences of sleep and sleep loss,” Sleep Medicine, vol. 9, supplement 1, pp. S23–S28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. S. Wang, M. E. G. Armstrong, B. J. Cairns, T. J. Key, and R. C. Travis, “Shift work and chronic disease: the epidemiological evidence,” Occupational Medicine, vol. 61, no. 2, pp. 78–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Bollinger, A. Bollinger, L. Skrum, S. Dimitrov, T. Lange, and W. Solbach, “Sleep-dependent activity of T cells and regulatory T cells,” Clinical and Experimental Immunology, vol. 155, no. 2, pp. 231–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Bryant, J. Trinder, and N. Curtis, “Sick and tired: does sleep have a vital role in the immune system?” Nature Reviews Immunology, vol. 4, no. 6, pp. 457–467, 2004. View at Scopus
  33. B. T. Preston, I. Capellini, P. McNamara, R. A. Barton, and C. L. Nunn, “Parasite resistance and the adaptive significance of sleep,” BMC Evolutionary Biology, vol. 9, no. 1, article 7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Wolk, A. S. Gami, A. Garcia-Touchard, V. K. Somers, and S. H. Rahimtoola, “Sleep and cardiovascular disease,” Current Problems in Cardiology, vol. 30, no. 12, pp. 621–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Meerlo, A. Sgoifo, and D. Suchecki, “Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity,” Sleep Medicine Reviews, vol. 12, no. 3, pp. 197–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Liao, X. Li, A. N. Vgontzas et al., “Sleep-disordered breathing in children is associated with impairment of sleep stage-specific shift of cardiac autonomic modulation,” Journal of Sleep Research, vol. 19, no. 2, pp. 358–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Silvani, “Physiological sleep-dependent changes in arterial blood pressure: central autonomic commands and baroreflex control,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 9, pp. 987–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Bjorvatn and S. Pallesen, “A practical approach to circadian rhythm sleep disorders,” Sleep Medicine Reviews, vol. 13, no. 1, pp. 47–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Kanathur, J. Harrington, and T. Lee-Chiong, “Circadian rhythm sleep disorders,” Clinics in Chest Medicine, vol. 31, no. 2, pp. 319–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. W. D. S. Killgore, “Effects of sleep deprivation on cognition,” Progress in Brain Research, vol. 185, pp. 105–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. K. Lee and A. B. Douglass, “Sleep in psychiatric disorders: where are we now?” Canadian Journal of Psychiatry, vol. 55, no. 7, pp. 403–412, 2010. View at Scopus
  42. R. Robillard, P. A. Lanfranchi, F. Prince, D. Filipini, and J. Carrier, “Sleep deprivation increases blood pressure in healthy normotensive elderly and attenuates the blood pressure response to orthostatic challenge,” Sleep, vol. 34, no. 3, pp. 335–339, 2011. View at Scopus
  43. P. F. Innominato, C. Focan, T. Gorlia et al., “Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer,” Cancer Research, vol. 69, no. 11, pp. 4700–4707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. W. J. M. Hrushesky, J. Grutsch, P. Wood et al., “Circadian clock manipulation for cancer prevention and control and the relief of cancer symptoms,” Integrative Cancer Therapies, vol. 8, no. 4, pp. 387–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Kubota, W. Sato, M. Toichi et al., “Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure,” Cognitive Brain Research, vol. 11, no. 2, pp. 281–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. L. T. Uusitalo, T. Laitinen, S. B. Väisänen, E. Länsimies, and R. Rauramaa, “Physical training and heart rate and blood pressure variability: a 5-yr randomized trial,” American Journal of Physiology, vol. 286, no. 5, pp. H1821–H1826, 2004. View at Publisher · View at Google Scholar · View at Scopus