About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 569037, 10 pages
http://dx.doi.org/10.1155/2013/569037
Research Article

Attenuation of CCl4-Induced Oxidative Stress and Hepatonephrotoxicity by Saudi Sidr Honey in Rats

1Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
2Medicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
3Department of Pathology (32), King Khalid University Hospital, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia

Received 19 December 2012; Accepted 16 January 2013

Academic Editor: Olumayokun A. Olajide

Copyright © 2013 Mohammed Al-Yahya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Alvarez-Suarez, S. Tulipani, S. Romandini, E. Bertoli, and M. Battino, “Contribution of honey in nutrition and human health: a review,” Mediterranean Journal of Nutrition and Metabolism, vol. 3, no. 1, pp. 15–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Feás, J. Pires, A. Iglesias, and M. L. Estevinho, “Characterization of artisanal honey produced on the Northwest of Portugal by melissopalynological and physico-chemical data,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3462–3470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Lay-flurrie, “Honey in wound care: effects, clinical application and patient benefit,” British Journal of Nursing, vol. 17, no. 11, pp. S30–S32, 2008. View at Scopus
  4. M. L. Al, D. Daniel, A. Moise, O. Bobis, L. Laslo, and S. Bogdanov, “Physico-chemical and bioactive properties of different floral origin honeys from Romania,” Food Chemistry, vol. 112, no. 4, pp. 863–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. I. C. F. R. Ferreira, E. Aires, J. C. M. Barreira, and L. M. Estevinho, “Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract,” Food Chemistry, vol. 114, no. 4, pp. 1438–1443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. B. Jull, A. Rodgers, and N. Walker, “Honey as a topical treatment for wounds,” Cochrane Database of Systematic Reviews, no. 4, p. CD005083, 2008. View at Scopus
  7. S. Bogdanov, T. Jurendic, R. Sieber, and P. Gallmann, “Honey for nutrition and health: a review,” Journal of the American College of Nutrition, vol. 27, no. 6, pp. 677–689, 2008. View at Scopus
  8. A. E. Jeffrey and C. M. Echazarreta, “Medical uses of honey,” Reviews in Biomedical, vol. 7, no. 1, pp. 43–49, 1996.
  9. K. L. Allen, P. C. Molan, and G. M. Reid, “A survey of the antibacterial activity of some New Zealand honeys,” Journal of Pharmacy and Pharmacology, vol. 43, no. 12, pp. 817–822, 1991. View at Scopus
  10. L. Vela, C. De Lorenzo, and R. A. Pérez, “Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties,” Journal of the Science of Food and Agriculture, vol. 87, no. 6, pp. 1069–1075, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Jeddar, A. Kharsany, and U. G. Ramsaroop, “The antibacterial action of honey. An in vitro study,” South African Medical Journal, vol. 67, no. 7, pp. 257–258, 1985. View at Scopus
  12. B. Zeina, B. I. Zohra, and S. Al-assad, “The effects of honey on leishmania parasites: an in vitro study,” Tropical Doctor, vol. 27, no. 1, pp. 36–38, 1997. View at Scopus
  13. F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. López-Lázaro, “Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy,” Cancer Letters, vol. 252, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Michaluart, J. L. Masferrer, A. M. Carothers et al., “Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation,” Cancer Research, vol. 59, no. 10, pp. 2347–2352, 1999. View at Scopus
  16. S. A. Reitman and S. Frankel, “A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases,” American Journal of Clinical Pathology, vol. 28, no. 1, pp. 56–63, 1957. View at Scopus
  17. E. J. King and A. R. Armstrong, “Calcium, phosphorus and phosphate,” in Practical Clinical Biochemistry, H. Varley, Ed., CBS publishers, New Delhi, India, 1988.
  18. S. Fiala, A. E. Fiala, and B. Dixon, “Gamma-glutamyl transpeptidase in transplantable, chemically induced rat hepatomas and spontaneous mouse hepatomas,” Journal of the National Cancer Institute, vol. 48, no. 5, pp. 1393–1401, 1972. View at Scopus
  19. A. Stiehl, “Hyperbilirubinaemia in liver disease,” Fortschritte der Medizin, vol. 100, no. 18, pp. 842–845, 1982. View at Scopus
  20. P. N. M. Demacher and A. G. M. Hijamaus, “A study of the use of polyethylene glycol in estimating cholesterol,” Clinical Chemistry, vol. 26, pp. 1775–1778, 1980.
  21. L. B. Foster and R. T. Dunn, “Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method,” Clinical Chemistry, vol. 19, no. 3, pp. 338–340, 1973. View at Scopus
  22. M. Burstein and H. R. Scholnick, “Turbidimetric estimation of chylomicrons and very low density lipoproteins in human sera after precipitation by sodium lauryl sulfate,” Biomedicine, vol. 19, no. 1, pp. 16–19, 1973. View at Scopus
  23. H. C. Utley, F. Bernheim, and P. Hochslein, “Effect of sulfhydryl reagent onperoxidation in microsome,” Archives of Biochemistry Biophysics, vol. 260, pp. 521–531, 1967.
  24. J. Sedlak and R. H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent,” Analytical Biochemistry C, vol. 25, pp. 192–205, 1968. View at Scopus
  25. C. F. Culling, Handbook of Histopathological and Histochemical Techniques, Butterworth, London, UK, 3rd edition, 1974.
  26. C. Rota, C. F. Chignell, and R. P. Mason, “Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements,” Free Radical Biology and Medicine, vol. 27, no. 7-8, pp. 873–881, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. W. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Scopus
  28. R. A. A. Mothana, M. S. Al-Said, A. J. Al-Rehaily, T. M. Thabet, N. A. Awad, M. Lalk, et al., “Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. Ex Sprague,” Food Chemistry, vol. 130, no. 2, pp. 344–349, 2012. View at Publisher · View at Google Scholar
  29. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. C. T. C. Liberato, S. M. De Morais, S. M. C. Siqueira et al., “Phenolic content and antioxidant and antiacetylcholinesterase properties of honeys from different Floral origins,” Journal of Medicinal Food, vol. 14, no. 6, pp. 658–663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. M. Williamson, D. T. Okpako, and F. J. Evans, The Liver and Biliary System: Selection, Preparation and Pharmacological Evaluation of Plant Material, John Wiley and Sons, London, UK, 1996.
  32. B. L. de Medeiros, K. S. Costa, J. Alves et al., “Liver protective activity of a hydroethanolic extract of Arrabidaea chica (Humb. and Bonpl.) B. Verl., (pariri),” Pharmacognosy Research, vol. 3, no. 2, pp. 79–84, 2011. View at Publisher · View at Google Scholar
  33. U. Y. Sanzgiri, V. Srivatsan, S. Muralidhara, C. E. Dallas, and J. V. Bruckner, “Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures,” Toxicology and Applied Pharmacology, vol. 143, no. 1, pp. 120–129, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Jaramillo-juárez, M. L. Rodriguez-Vázquez, A. R. Rincón-Sánchez, M. Consolación Martinez, G. G. Ortiz, J. Llamas, et al., “Acute renal failure induced by carbon tetrachloride in rats with hepatic cirrhosis,” Annals of HepatoIogy, vol. 7, no. 4, pp. 331–338, 2008.
  35. P. Abraham, G. Wilfred, and S. P. Cathrine, “Oxidative damage to the lipids and proteins of the lungs, testis and kidney of rats during carbon tetrachloride intoxication,” Clinica Chimica Acta, vol. 289, no. 1-2, pp. 177–179, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. G. S. Achliya, S. G. Wadodkar, and A. K. Dorle, “Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachloride-induced hepatic damage in rats,” Journal of Ethnopharmacology, vol. 90, no. 2-3, pp. 229–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Kilicoglu, C. Gencay, K. Kismet et al., “The ultrastructural research of liver in experimental obstructive jaundice and effect of honey,” American Journal of Surgery, vol. 195, no. 2, pp. 249–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Seakins and D. S. Robinson, “The effect of the administration of carbon tetrachloride on the formation of plasma lipoproteins in the rat,” The Biochemical Journal, vol. 86, pp. 401–407, 1963. View at Scopus
  39. M. I. Kazeem, H. A. Bankole, and A. A. Fatai, “Protective effect of ginger in normal and carbon-tetrachloride induced hepatotoxic rats,” Annals of Biological Research, vol. 2, no. 1, pp. 1–8, 2011.
  40. Y. Aniya, T. Koyama, C. Miyagi et al., “Free radical scavenging and hepatoprotective actions of the medicinal herb, Crossocephalum crepidioides from the Okinawa Islands,” Biological and Pharmaceutical Bulletin, vol. 28, no. 1, pp. 19–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. O. Adewole, A. A. Salako, O. W. Doherty, and T. Naicker, “Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats,” African Journal of Biomedical Research, vol. 10, no. 2, pp. 153–164, 2007.
  42. S. R. Orth and E. Ritz, “The nephrotic syndrome,” Internist, vol. 39, no. 12, pp. 1246–1252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Scopus
  44. A. M. Davison, J. S. Cameron, J.-P. Gruenfeld, D. N. S. Kerr, E. Ritz, and G. Winearls, “Oxford Textbook of Clinical Nephrology,” pp. 36–39, Oxford University Press, Oxford, USA, 1998.
  45. A. A. J. Nayagam, S. Manokaran, and N. Sudhakar, “Hepatoprotective efficacy of Tricholepis radicans DC. against CCl4 induced liver toxicity in albino rats,” Journal of Pharmacy Research, vol. 4, no. 4, pp. 1073–1075, 2011.
  46. R. S. Kumar, K. Asokkumar, and N. V. Murthy, “Hepatoprotective effects and antioxidant role of scutia myrtina on paracetamol induced hepatotoxicity in rats,” Journal of Complementary and Integrative Medicine, vol. 8, no. 1, p. 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. D. Kitts, Y. V. Yuan, and D. V. Godin, “Plasma and lipoprotein lipid composition and hepatic antioxidant status in spontaneously hypertensive (SHR) and normotensive (WKY) rats,” Canadian Journal of Physiology and Pharmacology, vol. 76, no. 2, pp. 202–209, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Sies, “Glutathione and its role in cellular functions,” Free Radical Biology and Medicine, vol. 27, no. 9-10, pp. 916–921, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. S. A. Ganie, E. Haq, A. Hamid et al., “Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum,” BMC Complementary and Alternative Medicine, vol. 11, p. 17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Ohta, M. Kongo, E. Sasaki, K. Nishida, and I. Ishiguro, “Therapeutic effect of melatonin on carbon tetrachloride-induced acute liver injury in rats,” Journal of Pineal Research, vol. 28, no. 2, pp. 119–126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Eraslan, M. Kanbur, S. Silici, and M. Karabacak, “Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice,” Ecotoxicology and Environmental Safety, vol. 73, no. 5, pp. 1084–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus