About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 582493, 15 pages
http://dx.doi.org/10.1155/2013/582493
Research Article

The Predicted Proteomic Network Associated with the Antiarthritic Action of Qingfu Guanjieshu in Collagen-II-Induced Arthritis in Rats

1Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
2Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
3State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau

Received 31 January 2013; Accepted 23 April 2013

Academic Editor: Taiping Fan

Copyright © 2013 Ting Yu Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Schellekens, H. Visser, B. A. de Jong et al., “The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide,” Arthritis and Rheumatism, vol. 43, pp. 155–163, 2000.
  2. D. L. Scott, D. P. M. Symmons, B. L. Coulton, and A. J. Popert, “Long-term outcome of treating rheumatoid arthritis: results after 20 years,” The Lancet, vol. 1, no. 8542, pp. 1108–1110, 1987. View at Scopus
  3. J. K. Rao, K. Mihaliak, K. Kroenke, J. Bradley, W. M. Tierney, and M. Weinberger, “Use of complementary therapies for arthritis among patients of rheumatologists,” Annals of Internal Medicine, vol. 131, no. 6, pp. 409–416, 1999. View at Scopus
  4. K. L. Soeken, S. A. Miller, and E. Ernst, “Herbal medicines for the treatment of rheumatoid arthritis: a systematic review,” Rheumatology, vol. 42, no. 5, pp. 652–659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Cai, H. Zhou, Y. F. Wong et al., “Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula,” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Cai, H. Zhou, F. W. Yuen et al., “Suppressive effects of QFGJS, a preparation from an anti-arthritic herbal formula, on rat experimental adjuvant-induced arthritis,” Biochemical and Biophysical Research Communications, vol. 337, no. 2, pp. 586–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Gobezie, P. J. Millett, D. S. Sarracino, C. Evans, and T. S. Thornhill, “Proteomics: applications to the study of rheumatoid arthritis and osteoarthritis,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 14, no. 6, pp. 325–332, 2006. View at Scopus
  8. D. Fenyö and R. C. Beavis, “Informatics and data management in proteomics,” Trends in Biotechnology, vol. 20, pp. S35–S38, 2002. View at Scopus
  9. W. Zhang and B. T. Chait, “ProFound: an expert system for protein identification using mass spectrometric peptide mapping information,” Analytical Chemistry, vol. 72, no. 11, pp. 2482–2489, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hegen, J. C. Keith Jr., M. Collins, and C. L. Nickerson-Nutter, “Utility of animal models for identification of potential therapeutics for rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 11, pp. 1505–1515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. F. Wong, H. Zhou, J. R. Wang, Y. Xie, H. X. Xu, and L. Liu, “Anti-inflammatory and analgesic effects and molecular mechanisms of JCICM-6, a purified extract derived from an anti-arthritic Chinese herbal formula,” Phytomedicine, vol. 15, no. 6-7, pp. 416–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Jay, D. A. Harris, and C. J. Cha, “Boundary lubrication by lubricin is mediated by O-linked β(1-3)Gal-GalNAc oligosaccharides,” Glycoconjugate Journal, vol. 18, no. 10, pp. 807–815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yamanishi and G. S. Firestein, “Pathogenesis of rheumatoid arthritis: the role of synoviocytes,” Rheumatic Disease Clinics of North America, vol. 27, no. 2, pp. 355–371, 2001. View at Scopus
  15. O. FitzGerald, M. Soden, G. Yanni, R. Robinson, and B. Bresnihan, “Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 50, no. 11, pp. 792–796, 1991. View at Scopus
  16. T. J. Smeets, R. J. Dolhain, F. C. Breedveld, and P. P. Tak, “Analysis of the cellular infiltrates and expression of cytokines in synovial tissue from patients with rheumatoid arthritis and reactive arthritis,” The Journal of Pathology, vol. 186, pp. 75–81, 1998.
  17. P. P. Tak, T. J. M. Smeets, M. R. Daha et al., “Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity,” Arthritis and Rheumatism, vol. 40, no. 2, pp. 217–225, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. G. S. Firestein, “Evolving concepts of rheumatoid arthritis,” Nature, vol. 423, no. 6937, pp. 356–361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gobezie, A. Kho, B. Krastins et al., “High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis,” Arthritis Research and Therapy, vol. 9, article R36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Liao, J. Wu, E. Kuhn et al., “Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 50, no. 12, pp. 3792–3803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Tilleman, K. Van Steendam, T. Cantaert, F. De Keyser, D. Elewaut, and D. Deforce, “Synovial detection and autoantibody reactivity of processed citrullinated isoforms of vimentin in inflammatory arthritides,” Rheumatology, vol. 47, no. 5, pp. 597–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wu, W. Liu, A. Bemis et al., “Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis,” Arthritis and Rheumatism, vol. 56, no. 11, pp. 3675–3684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Yamagiwa, G. Sarkar, M. C. Charlesworth, D. J. McCormick, and M. E. Bolander, “Two-dimensional gel electrophoresis of synovial fluid: method for detecting candidate protein markers for osteoarthritis,” Journal of Orthopaedic Science, vol. 8, no. 4, pp. 482–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. C. Chen, P. W. Wang, T. L. Pan, G. Bazylak, and J. J. Shen, “Proteomic analysis of plasma to reveal the impact of short-term etanercept therapy in pediatric patients with enthesitis-related arthritis: a case report,” Combinatorial Chemistry and High Throughput Screening, vol. 13, no. 6, pp. 469–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Dwivedi, N. Dhindsa, O. V. Krokhin, J. Cortens, J. A. Wilkins, and H. S. El-Gabalawy, “The effects of infliximab therapy on the serum proteome of rheumatoid arthritis patients,” Arthritis Research and Therapy, vol. 11, no. 2, article R32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Goëb, M. Thomas-L'Otellier, R. Daveau et al., “Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes,” Arthritis Research and Therapy, vol. 11, no. 2, article R38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. D. Tew and D. M. Townsend, “Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification,” Drug Metabolism Reviews, vol. 43, no. 2, pp. 179–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Yin, V. N. Ivanov, H. Habelhah, K. Tew, and Z. Ronai, “Glutathione S-Transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases1,” Cancer Research, vol. 60, no. 15, pp. 4053–4057, 2000. View at Scopus
  29. P. B. Grabar, D. Logar, M. Tomšič, B. Rozman, and V. Dolžan, “Genetic polymorphisms of glutathione S-transferases and disease activity of rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 27, no. 2, pp. 229–236, 2009. View at Scopus
  30. K. L. Chambliss, R. G. F. Gray, G. Rylance, R. J. Pollitt, and K. M. Gibson, “Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency,” Journal of Inherited Metabolic Disease, vol. 23, no. 5, pp. 497–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Y. Kedishvili, K. M. Popov, P. M. Rougraff, Y. Zhao, D. W. Crabb, and R. A. Harris, “CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily. cDNA cloning, evolutionary relationships, and tissue distribution,” The Journal of Biological Chemistry, vol. 267, no. 27, pp. 19724–19729, 1992. View at Scopus
  32. O. A. Osung, M. Chandra, and E. J. Holborow, “Intermediate filaments in synovial lining cells in rheumatoid arthritis and other arthritides are of vimentin type,” Annals of the Rheumatic Diseases, vol. 41, no. 1, pp. 74–77, 1982. View at Scopus
  33. J. E. Eriksson, T. He, A. V. Trejo-Skalli et al., “Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments,” Journal of Cell Science, vol. 117, no. 6, pp. 919–932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. L. Martys, C. L. Ho, R. K. H. Liem, and G. G. Gundersen, “Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent protein-vimentin,” Molecular Biology of the Cell, vol. 10, no. 5, pp. 1289–1295, 1999. View at Scopus
  35. N. Mor-Vaknin, A. Punturieri, K. Sitwala, and D. M. Markovitz, “Vimentin is secreted by activated macrophages,” Nature Cell Biology, vol. 5, no. 1, pp. 59–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. R. Vossenaar, N. Després, E. Lapointe et al., “Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin,” Arthritis Research and Therapy, vol. 6, no. 2, pp. R142–R150, 2004. View at Scopus
  37. Y. Xie, Z. H. Jiang, H. Zhou et al., “Combinative method using HPLC quantitative and qualitative analyses for quality consistency assessment of a herbal medicinal preparation,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 1, pp. 204–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Xie, H. Zhou, Y. F. Wong, H. X. Xu, Z. H. Jiang, and L. Liu, “Study on the pharmacokinetics and metabolism of paeonol in rats treated with pure paeonol and an herbal preparation containing paeonol by using HPLC-DAD-MS method,” Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 4, pp. 748–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. E. L. Leung, Z. W. Cao, Z. H. Jiang, H. Zhou, and L. Liu, “Network-based drug discovery by integrating systems biology and computational technologies,” Briefings in Bioinformatics, 2012. View at Publisher · View at Google Scholar