About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 619207, 6 pages
http://dx.doi.org/10.1155/2013/619207
Review Article

Regulation of DDAH1 as a Potential Therapeutic Target for Treating Cardiovascular Diseases

1Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
2Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA

Received 13 April 2013; Accepted 29 May 2013

Academic Editor: Keji Chen

Copyright © 2013 Xiaoyu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-A. Chen, L. J. Druhan, S. Varadharaj, Y.-R. Chen, and J. L. Zweier, “Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme,” Journal of Biological Chemistry, vol. 283, no. 40, pp. 27038–27047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Chen, J. H. Traverse, R. Du, M. Hou, and R. J. Bache, “Nitric oxide modulates myocardial oxygen consumption in the failing heart,” Circulation, vol. 106, no. 2, pp. 273–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Chen, J. H. Traverse, M. Hou, Y. Li, R. Du, and R. J. Bache, “Effect of PDE5 inhibition on coronary hemodynamics in pacing-induced heart failure,” The American Journal of Physiology, vol. 284, no. 5, pp. H1513–H1520, 2003. View at Scopus
  4. J. H. Traverse, P. Melchert, G. L. Pierpont, B. Jones, M. Crampton, and R. J. Bache, “Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise,” Circulation Research, vol. 84, no. 4, pp. 401–408, 1999. View at Scopus
  5. P. L. Huang, Z. Huang, H. Mashimo et al., “Hypertension in mice lacking the gene for endothelial nitric oxide synthase,” Nature, vol. 377, no. 6546, pp. 239–242, 1995. View at Scopus
  6. W. Li, S. Mital, C. Ojaimi, A. Csiszar, G. Kaley, and T. H. Hintze, “Premature death and age-related cardiac dysfunction in male eNOS-knockout mice,” Journal of Molecular and Cellular Cardiology, vol. 37, no. 3, pp. 671–680, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. H. Böger, L. M. Sullivan, E. Schwedhelm et al., “Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community,” Circulation, vol. 119, no. 12, pp. 1592–1600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Nicholls, Z. Wang, R. Koeth et al., “Metabolic profiling of arginine and nitric oxide pathways predicts hemodynamic abnormalities and mortality in patients with cardiogenic shock after acute myocardial infarction,” Circulation, vol. 116, no. 20, pp. 2315–2324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Takimoto, H. C. Champion, M. Li et al., “Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1221–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Barouch, R. W. Harrison, M. W. Skaf et al., “Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms,” Nature, vol. 416, no. 6878, pp. 337–340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Barouch, T. P. Cappola, R. W. Harrison et al., “Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 6, pp. 637–644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Jones, J. J. M. Greer, R. van Haperen, D. J. Duncker, R. de Crom, and D. J. Lefer, “Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4891–4896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Scherrer-Crosbie, R. Ullrich, K. D. Bloch et al., “Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice,” Circulation, vol. 104, no. 11, pp. 1286–1291, 2001. View at Scopus
  14. F. Ichinose, K. D. Bloch, J. C. Wu et al., “Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency,” The American Journal of Physiology, vol. 286, no. 3, pp. H1070–H1075, 2004. View at Scopus
  15. H. Ruetten, S. Dimmeler, D. Gehring, C. Ihling, and A. M. Zeiher, “Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload,” Cardiovascular Research, vol. 66, no. 3, pp. 444–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. S. Buys, M. J. Raher, S. L. Blake et al., “Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload,” The American Journal of Physiology, vol. 293, no. 1, pp. H620–H627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Janssens, P. Pokreisz, L. Schoonjans et al., “Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction,” Circulation Research, vol. 94, no. 9, pp. 1256–1262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. I. N. Mungrue, R. Gros, X. You et al., “Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 735–743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Haywood, P. S. Tsao, H. E. von der Leyen et al., “Expression of inducible nitric oxide synthase in human heart failure,” Circulation, vol. 93, no. 6, pp. 1087–1094, 1996. View at Scopus
  20. F. M. Habib, D. R. Springall, G. J. Davies, C. M. Oakley, M. H. Yacoub, and J. M. Polak, “Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy,” The Lancet, vol. 347, no. 9009, pp. 151–155, 1996. View at Scopus
  21. P. Zhang, X. Xu, X. Hu, E. D. Van Deel, G. Zhu, and Y. Chen, “Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure,” Circulation Research, vol. 100, no. 7, pp. 1089–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Cardounel, H. Cui, A. Samouilov et al., “Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial no production and vascular function,” Journal of Biological Chemistry, vol. 282, no. 2, pp. 879–887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Feng, L. Xiangru, A. J. Fortin et al., “Elevation of an endogenous inhibitor of nitric oxide synthesis in experimental congestive heart failure,” Cardiovascular Research, vol. 37, no. 3, pp. 667–675, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Kielstein, S. M. Bode-Böger, G. Klein, S. Graf, H. Haller, and D. Fliser, “Endogenous nitric oxide synthase inhibitors and renal perfusion in patients with heart failure,” European Journal of Clinical Investigation, vol. 33, no. 5, pp. 370–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Surdacki, M. Nowicki, J. Sandmann et al., “Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension,” Journal of Cardiovascular Pharmacology, vol. 33, no. 4, pp. 652–658, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Sydow, C. E. Mondon, and J. P. Cooke, “Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA,” Vascular Medicine, vol. 10, no. 1, pp. S35–S43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. H. Böger, S. M. Bode-Böger, P. S. Tsao, P. S. Lin, J. R. Chan, and J. P. Cooke, “An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes,” Journal of the American College of Cardiology, vol. 36, no. 7, pp. 2287–2295, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H.-B. Xiao, Z.-C. Yang, S.-J. Jia et al., “Effect of asymmetric dimethylarginine on atherogenesis and erythrocyte deformability in apolipoprotein E deficient mice,” Life Sciences, vol. 81, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Chen, Y. Li, P. Zhang et al., “Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts,” The American Journal of Physiology, vol. 289, no. 5, pp. H2212–H2219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Cosentino, S. Patton, L. V. d'Uscio et al., “Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats,” Journal of Clinical Investigation, vol. 101, no. 7, pp. 1530–1537, 1998.
  31. U. Landmesser, S. Dikalov, S. R. Price et al., “Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1201–1209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Xia, V. L. Dawson, T. M. Dawson, S. H. Snyder, and J. L. Zweier, “Nitric oxide synthase generates Superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6770–6774, 1996. View at Scopus
  33. M.-H. Zou, C. Shi, and R. A. Cohen, “Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 817–826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. Baek, B. A. Thiel, S. Lucas, and D. J. Stuehr, “Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme,” Journal of Biological Chemistry, vol. 268, no. 28, pp. 21120–21129, 1993. View at Scopus
  35. B. R. Crane, A. S. Arvai, D. K. Ghosh et al., “Structure of nitric oxide synthase oxygenase dimer with pterin and substrate,” Science, vol. 279, no. 5359, pp. 2121–2126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Xia and J. L. Zweier, “Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6954–6958, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. N. M. Olken, Y. Osawa, and M. A. Marletta, “Characterization of the inactivation of nitric oxide synthase by N(G)-methyl-L-arginine: evidence for heme loss,” Biochemistry, vol. 33, no. 49, pp. 14784–14791, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. A. J. Cardounel, Y. Xia, and J. L. Zweier, “Endogenous methylarginines modulate superoxide as well as nitric oxide generation from neuronal nitric-oxide synthase: differences in the effects of monomethyl- and dimethylarginines in the presence and absence of tetrahydrobiopterin,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 7540–7549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Scalera, J. Borlak, B. Beckmann et al., “Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1816–1822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Toth, A. Racz, P. M. Kaminski, M. S. Wolin, Z. Bagi, and A. Koller, “Asymmetrical dimethylarginine inhibits shear stress-induced nitric oxide release and dilation and elicits superoxide-mediated increase in arteriolar tone,” Hypertension, vol. 49, no. 3, pp. 563–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Wells and A. Holian, “Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells,” The American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 5, pp. 520–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Ogawa, M. Kimoto, and K. Sasaoka, “Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats,” Biochemical and Biophysical Research Communications, vol. 148, no. 2, pp. 671–677, 1987. View at Scopus
  43. J. M. Leiper, J. Santa Maria, A. Chubb et al., “Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases,” Biochemical Journal, vol. 343, no. 1, pp. 209–214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. T. L. Tran, M. F. Fox, P. Vallance, and J. M. Leiper, “Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins,” Genomics, vol. 68, no. 1, pp. 101–105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. F. I. Arrigoni, P. Vallance, S. G. Haworth, and J. M. Leiper, “Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia,” Circulation, vol. 107, no. 8, pp. 1195–1201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Hu, D. Atzler, X. Xu et al., “Dimethylarginine dimethylaminohydrolase-1 is the critical enzyme for degrading the cardiovascular risk factor asymmetrical dimethylarginine,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1540–1546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Dayoub, V. Achan, S. Adimoolam et al., “Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence,” Circulation, vol. 108, no. 24, pp. 3042–3047, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Hu, X. Xu, G. Zhu et al., “Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine,” Circulation, vol. 120, no. 22, pp. 2222–2229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Leiper, M. Nandi, B. Torondel et al., “Disruption of methylarginine metabolism impairs vascular homeostasis,” Nature Medicine, vol. 13, no. 2, pp. 198–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Zhang, X. Hu, X. Xu, Y. Chen, and R. J. Bache, “Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 4, pp. 890–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Ikegami and Y. Matsuzaki, “Ursodeoxycholic acid: mechanism of action and novel clinical applications,” Hepatology Research, vol. 38, no. 2, pp. 123–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. B. Hylemon, H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent, “Bile acids as regulatory molecules,” Journal of Lipid Research, vol. 50, no. 8, pp. 1509–1520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Trauner, T. Claudel, P. Fickert, T. Moustafa, and M. Wagner, “Bile acids as regulators of hepatic lipid and glucose metabolism,” Digestive Diseases, vol. 28, no. 1, pp. 220–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. J. Parks, S. G. Blanchard, R. K. Bledsoe et al., “Bile acids: natural ligands for an orphan nuclear receptor,” Science, vol. 284, no. 5418, pp. 1365–1368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Sinisalo, H. Vanhanen, P. Pajunen, H. Vapaatalo, and M. S. Nieminen, “Ursodeoxycholic acid and endothelial-dependent, nitric oxide-independent vasodilatation of forearm resistance arteries in patients with coronary heart disease,” British Journal of Clinical Pharmacology, vol. 47, no. 6, pp. 661–665, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. P. R. Maloney, D. J. Parks, C. D. Haffner et al., “Identification of a chemical tool for the orphan nuclear receptor FXR,” Journal of Medicinal Chemistry, vol. 43, no. 16, pp. 2971–2974, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Ma, P. K. Saha, L. Chan, and D. D. Moore, “Farnesoid X receptor is essential for normal glucose homeostasis,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 1102–1109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. J. Sinal, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert, and F. J. Gonzalez, “Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis,” Cell, vol. 102, no. 6, pp. 731–744, 2000. View at Scopus
  59. J. A. Talwalkar and K. D. Lindor, “Primary biliary cirrhosis,” The Lancet, vol. 362, no. 9377, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Schild, F. Dombrowski, U. Lendeckel, C. Schulz, A. Gardemann, and G. Keilhoff, “Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver,” Biochimica et Biophysica Acta, vol. 1782, no. 3, pp. 180–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Schild, I. Jaroscakova, U. Lendeckel, G. Wolf, and G. Keilhoff, “Neuronal nitric oxide synthase controls enzyme activity pattern of mitochondria and lipid metabolism,” FASEB Journal, vol. 20, no. 1, pp. 145–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. U. Özcan, E. Yilmaz, L. Özcan et al., “Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes,” Science, vol. 313, no. 5790, pp. 1137–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. S. von Haehling, J. C. Schefold, E. A. Jankowska et al., “Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial,” Journal of the American College of Cardiology, vol. 59, no. 6, pp. 585–592, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Hu, M. Chouinard, A. L. Cox et al., “Farnesoid X receptor agonist reduces serum asymmetric dimethylarginine levels through hepatic dimethylarginine dimethylaminohydrolase-1 gene regulation,” Journal of Biological Chemistry, vol. 281, no. 52, pp. 39831–39838, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Li, A. Wilson, X. Gao et al., “Coordinated regulation of dimethylarginine dimethylaminohydrolase-1 and cationic amino acid transporter-1 by farnesoid X receptor in mouse liver and kidney and its implication in the control of blood levels of asymmetric dimethylarginine,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 1, pp. 234–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Mencarelli, S. Cipriani, B. Renga et al., “FXR activation improves myocardial fatty acid metabolism in a rodent model of obesity-driven cardiotoxicity,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 23, pp. 94–101, 2013. View at Scopus
  67. L. Zhang, T. Li, D. Yu, B. M. Forman, and W. Huang, “FXR protects lung from lipopolysaccharide-induced acute injury,” Molecular Endocrinology, vol. 26, no. 1, pp. 27–36, 2012. View at Publisher · View at Google Scholar · View at Scopus