About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 625892, 13 pages
http://dx.doi.org/10.1155/2013/625892
Research Article

Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd

Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan

Received 29 November 2012; Revised 26 January 2013; Accepted 7 February 2013

Academic Editor: I-Min Liu

Copyright © 2013 Ting-ni Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kim and J. M. Egan, “The role of incretins in glucose homeostasis and diabetes treatment,” Pharmacological Reviews, vol. 60, no. 4, pp. 470–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. L. L. Baggio and D. J. Drucker, “Biology of incretins: GLP-1 and GIP,” Gastroenterology, vol. 132, no. 6, pp. 2131–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Holst, “The physiology of glucagon-like peptide 1,” Physiological Reviews, vol. 87, no. 4, pp. 1409–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. P. L. Brubaker, “Minireview: update on incretin biology: focus on glucagon-like peptide-1,” Endocrinology, vol. 151, no. 5, pp. 1984–1989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Reimann, G. Tolhurst, and F. M. Gribble, “G-protein-coupled receptors in intestinal chemosensation,” Cell Metabolism, vol. 15, no. 4, pp. 421–431, 2012.
  6. K. Iwatsuki and K. Torii, “Peripheral chemosensing system for tastants and nutrients,” Current Opinion in Endocrinology, Diabetes, and Obesity, vol. 19, no. 1, pp. 19–25, 2012.
  7. S. Edfalk, P. Steneberg, and H. Edlund, “Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion,” Diabetes, vol. 57, no. 9, pp. 2280–2287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Hirasawa, K. Tsumaya, T. Awaji et al., “Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120,” Nature Medicine, vol. 11, no. 1, pp. 90–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Lauffer, R. Iakoubov, and P. L. Brubaker, “GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell,” Diabetes, vol. 58, no. 5, pp. 1058–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Thomas, A. Gioiello, L. Noriega et al., “TGR5-mediated bile acid sensing controls glucose homeostasis,” Cell Metabolism, vol. 10, no. 3, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Moran-Ramos, A. R. Tovar, and N. Torres, “Diet: friend or foe of enteroendocrine cells–how it interacts with enteroendocrine cells.,” Advances in Nutrition, vol. 3, no. 1, pp. 8–20, 2012.
  12. C. D. Dotson, S. Vigues, N. I. Steinle, and S. D. Munger, “T1R and T2R receptors: the modulation of incretin hormones and potential targets for the treatment of type 2 diabetes mellitus,” Current Opinion in Investigational Drugs, vol. 11, no. 4, pp. 447–454, 2010. View at Scopus
  13. M. . Behrens and W. Meyerhof, “Gustatory and extragustatory functions of mammalian taste receptors,” Physiology & Behavior, vol. 105, no. 1, pp. 4–13, 2011.
  14. H. J. Jang, Z. Kokrashvili, M. J. Theodorakis et al., “Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 15069–15074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. G. Renwick and S. V. Molinary, “Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release,” British Journal of Nutrition, vol. 104, no. 10, pp. 1415–1420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Gerspach, R. E. Steinert, L. Schönenberger, A. Graber-Maier, and C. Beglinger, “The role of the gut sweet taste receptor in regulating glp-1, PYY, and CCK release in humans,” American Journal of Physiology, vol. 301, no. 2, pp. E317–E325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. E. Ford, V. Peters, N. M. Martin et al., “Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects,” European Journal of Clinical Nutrition, vol. 65, no. 4, pp. 508–513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. V. Wu, N. Rozengurt, M. Yang, S. H. Young, J. Sinnett-Smith, and E. Rozengurt, “Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2392–2397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Rozengurt, S. V. Wu, M. C. Chen, C. Huang, C. Sternini, and E. Rozengurt, “Colocalization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon,” American Journal of Physiology, vol. 291, no. 5, pp. G792–G802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. T. I. Jeon, B. Zhu, J. L. Larson, and T. F. Osborne, “SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3693–3700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. D. Dotson, L. Zhang, H. Xu et al., “Bitter taste receptors influence glucose homeostasis,” PLoS ONE, vol. 3, no. 12, Article ID e3974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. K. Grover and S. P. Yadav, “Pharmacological actions and potential uses of Momordica charantia: a review,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 123–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. B. Krawinkel and G. B. Keding, “Bitter gourd (Momordica charantia): a dietary approach to hyperglycemia,” Nutrition Reviews, vol. 64, no. 7, pp. 331–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Basch, S. Gabardi, and C. Ulbricht, “Bitter melon (Momordica charantia): a review of efficacy and safety,” American Journal of Health-System Pharmacy, vol. 60, no. 4, pp. 356–359, 2003. View at Scopus
  25. P. Chaturvedi, “Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects,” Journal of Medicinal Food, vol. 15, no. 2, pp. 101–107, 2012.
  26. J. Singh, E. Cumming, G. Manoharan, H. Kalasz, and E. Adeghate, “Medicinal chemistry of the anti-diabetic effects of Momordica charantia: active constituents and modes of actions,” The Open Medicinal Chemistry Journal, vol. 5, supplement 2, pp. 70–77, 2011.
  27. T. Uebanso, H. Arai, Y. Taketani et al., “Extracts of Momordica charantia suppress postprandial hyperglycemia in rats,” Journal of Nutritional Science and Vitaminology, vol. 53, no. 6, pp. 482–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “Effect of exogenous ATP on Momordica charantia Linn. (Cucurbitaceae) induced inhibition of d-glucose, l-tyrosine and fluid transport across rat everted intestinal sacs in vitro,” Journal of Ethnopharmacology, vol. 110, no. 2, pp. 257–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Ahmed, E. Adeghate, A. K. Sharma, D. J. Pallot, and J. Singh, “Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat,” Diabetes Research and Clinical Practice, vol. 40, no. 3, pp. 145–151, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. A. C. Keller, J. Ma, A. Kavalier, et al., “Saponins from the traditional medicinal plantMomordica charantiastimulate insulin secretion in vitro,” Phytomedicine, vol. 19, no. 1, pp. 32–37, 2011.
  31. N. P. C. Fernandes, C. V. Lagishetty, V. S. Panda, and S. R. Naik, “An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract,” BMC Complementary and Alternative Medicine, vol. 7, article 29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. S. Rathi, J. K. Grover, and V. Vats, “The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism,” Phytotherapy Research, vol. 16, no. 3, pp. 236–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sarkar, M. Pranava, and R. A. Marita, “Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes,” Pharmacological Research, vol. 33, no. 1, pp. 1–4, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Tan, J. M. Ye, N. Turner et al., “Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway,” Chemistry and Biology, vol. 15, no. 3, pp. 263–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. L. Cheng, H. K. Huang, C. I. Chang, C. P. Tsai, and C. H. Chou, “A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 6835–6843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. C. Shih, C. H. Lin, W. L. Lin, and J. B. Wu, “Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats,” Journal of Ethnopharmacology, vol. 123, no. 1, pp. 82–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Q. Wang, X. H. Zhang, and Y. Yu, “Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice,” The Journal of Nutritional Biochemistry, vol. 22, no. 11, pp. 1064–1073, 2011.
  38. C. Y. Chao and C. J. Huang, “Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells,” Journal of Biomedical Science, vol. 10, no. 6, pp. 782–791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Y. Chuang, C. Hsu, C. Y. Chao, Y. S. Wein, Y. H. Kuo, and C. J. Huang, “Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.),” Journal of Biomedical Science, vol. 13, no. 6, pp. 763–772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. H. Tsai, E. C. Chen, H. S. Tsay, and C. J. Huang, “Wild bitter gourd improves metabolic syndrome: a preliminary dietary supplementation trial,” Nutrition Journal, vol. 11, p. 4, 2012.
  41. C. Hsu, C. L. Hsieh, Y. H. Kuo, and C. J. Huang, “Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia,” Journal of Agricultural and Food Chemistry, vol. 59, no. 9, pp. 4553–4561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Khanna, S. C. Jain, A. Panagariya, and V. P. Dixit, “Hypoglycemic activity of polypeptide-p from a plant source,” Journal of Natural Products, vol. 44, no. 6, pp. 648–655, 1981. View at Scopus
  43. H. Okabe, Y. Miyahara, and T. Yamauchi, “Studies on the constituents of Momordica charantia L. IV. Characterization of the new cucurbitacin glycosides of the immature fruits. (2) Structures of the bitter glycosides, momordicosides K and L,” Chemical and Pharmaceutical Bulletin, vol. 30, no. 12, pp. 4334–4340, 1982. View at Scopus
  44. J. I. Eiki, K. Saeki, N. Nagano et al., “A selective small molecule glucagon-like peptide-1 secretagogue acting via depolarization-coupled Ca2+ influx,” Journal of Endocrinology, vol. 201, no. 3, pp. 361–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. T. A. Greene, S. Alarcon, A. Thomas et al., “Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin,” PLoS ONE, vol. 6, no. 5, Article ID e20123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Hsu and C. J. Huang, “Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARα and adipose SREBP-1c-regulated genes,” Journal of Nutrition, vol. 136, no. 7, pp. 1779–1785, 2006. View at Scopus
  47. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993. View at Scopus
  48. B. Bufel, T. Hofmann, D. Krautwurst, J. D. Raguse, and W. Meyerhof, “The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides,” Nature Genetics, vol. 32, no. 3, pp. 397–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Masuho, M. Tateyama, and O. Saitoh, “Characterization of bitter taste responses of intestinal STC-1 cells,” Chemical Senses, vol. 30, no. 4, pp. 281–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. C. P. Geraedts, F. J. Troost, M. A. J. G. Fischer, L. Edens, and W. H. M. Saris, “Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins,” Molecular Nutrition and Food Research, vol. 55, no. 3, pp. 476–484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Q. Chen, L. L. Y. Chan, and E. T. S. Li, “Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet,” Journal of Nutrition, vol. 133, no. 4, pp. 1088–1093, 2003. View at Scopus
  52. G. Tolhurst, F. Reimann, and F. M. Gribble, “Nutritional regulation of glucagon-like peptide-1 secretion,” Journal of Physiology, vol. 587, no. 1, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Hostettmann and A. Marston, Saponins, Cambridge University Press, Cambrige, UK, 1995.
  54. L. Harinantenaina, M. Tanaka, S. Takaoka et al., “Momordica charantia constituents and antidiabetic screening of the isolated major compounds,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 7, pp. 1017–1021, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Iwatsuki and H. Uneyama, “Sense of taste in the gastrointestinal tract,” Journal of Pharmacological Sciences, vol. 118, no. 2, pp. 123–128, 2012.
  56. W. Meyerhof, C. Batram, C. Kuhn et al., “The molecular receptive ranges of human TAS2R bitter taste receptors,” Chemical Senses, vol. 35, no. 2, pp. 157–170, 2009. View at Publisher · View at Google Scholar · View at Scopus