About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 626397, 11 pages
http://dx.doi.org/10.1155/2013/626397
Research Article

The Antiobesity Effect of Polygonum aviculare L. Ethanol Extract in High-Fat Diet-Induced Obese Mice

1Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
2Herbal Material Management Team, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea

Received 21 August 2012; Revised 22 December 2012; Accepted 31 December 2012

Academic Editor: Ki-Wan Oh

Copyright © 2013 Yoon-Young Sung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Lei, X. N. Zhang, W. Wang et al., “Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice,” International Journal of Obesity, vol. 31, no. 6, pp. 1023–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. S. Lee, B. Y. Cha, K. Saito et al., “Effects of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-induced obese mice,” Phytomedicine, vol. 18, no. 8-9, pp. 648–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. G. Hofbauer, J. R. Nicholson, and O. Boss, “The obesity epidemic: current and future pharmacological treatments,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 565–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Sharma and D. C. Henderson, “Sibutramine: current status as an anti-obesity drug and its future perspectives,” Expert Opinion on Pharmacotherapy, vol. 9, no. 12, pp. 2161–2173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Bray, “Drug treatment of obesity,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 4, pp. 403–418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Shimada, T. Kudo, T. Akase, and M. Aburada, “Preventive effects of bofutsushosan on obesity and various metabolic disorders,” Biological and Pharmaceutical Bulletin, vol. 31, no. 7, pp. 1362–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Akagiri, Y. Naito, H. Ichikawa et al., “Bofutsushosan, an oriental herbal medicine, attenuates the weight gain of white adipose tissue and the increased size of adipocytes associated with the increase in their expression of uncoupling protein 1 in high-fat diet-fed male KK/Ta mice,” Journal of Clinical Biochemistry and Nutrition, vol. 42, no. 2, pp. 158–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Khan, M. Safdar, M. M. A. Khan, K. N. Khattak, and R. A. Anderson, “Cinnamon improves glucose and lipids of people with type 2 diabetes,” Diabetes Care, vol. 26, no. 12, pp. 3215–3218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Hioki, K. Yoshimoto, and T. Yoshida, “Efficacy of bofu-tsusho-san, an oriental herbal medicine, in obese Japanese women with impaired glucose tolerance,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 9, pp. 614–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Yin, D. G. Kang, D. H. Choi, T. O. Kwon, and H. S. Lee, “Screening of vasorelaxant activity of some medicinal plants used in Oriental medicines,” Journal of Ethnopharmacology, vol. 99, no. 1, pp. 113–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Robu, B. Robu, and S. Robu, “Valorification of herbs in phytotherapy—an alternative of chemical treatments in agriculture,” Environmental Engineering and Management Journal, vol. 7, no. 5, pp. 579–588, 2008. View at Scopus
  12. C. Y. Hsu, “Antioxidant activity of extract from Polygonum aviculare L.,” Biological Research, vol. 39, no. 2, pp. 281–288, 2006. View at Scopus
  13. R. M. Habibi, R. A. Mohammadi, A. Delazar et al., “Effects ofPolygonum aviculareherbal extract on proliferation and apoptotic gene expression of MCF-7,” DARU, vol. 19, no. 5, pp. 326–331, 2011.
  14. M. González Begné, N. Yslas, E. Reyes, V. Quiroz, J. Santana, and G. Jimenez, “Clinical effect of a Mexican Sanguinaria extract (Polygonum aviculare L.) on gingivitis,” Journal of Ethnopharmacology, vol. 74, no. 1, pp. 45–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Carmichael, W. G. DeGraff, and A. F. Gazdar, “Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing,” Cancer Research, vol. 47, no. 4, pp. 936–941, 1987. View at Scopus
  16. H. Choi, H. Eo, K. Park et al., “A water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model,” Biochemical and Biophysical Research Communications, vol. 359, no. 3, pp. 419–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. S. Han, H. S. Han, K. H. Cho, Y. B. Kim, J. W. Seo, and C. W. Song, “Studies on the basic data of Ktc: C57BL/6 mice with age: body weight, organ weight, hematology, serum chemistry and urinalysis,” Korean Journal of Laboratory Animal Science, vol. 10, no. 2, pp. 197–209, 1994.
  18. M. A. Schnell, C. Hardy, M. Hawley, K. J. Propert, and J. M. Wilson, “Effect of blood collection technique in mice on clinical pathology parameters,” Human Gene Therapy, vol. 13, no. 1, pp. 155–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Mates, C. Rerez-Gomez, and I. N. Castro, “Antioxidant enzymes and human disease,” Clinical Biochemistry, vol. 32, pp. 596–603, 1999.
  20. M. Fasshauer and R. Paschke, “Regulation of adipocytokines and insulin resistance,” Diabetologia, vol. 46, no. 12, pp. 1594–1603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Mapfei, J. Halaas, E. Ravussin et al., “Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects,” Nature Medicine, vol. 1, no. 11, pp. 1155–1161, 1995. View at Scopus
  22. E. D. Rosen and B. M. Spiegelman, “Adipocytes as regulators of energy balance and glucose homeostasis,” Nature, vol. 444, no. 7121, pp. 847–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Schoonjans, B. Staels, and J. Auwerx, “The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation,” Biochimica et Biophysica Acta, vol. 1302, no. 2, pp. 93–109, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. E. D. Rosen, C. J. Walkey, P. Puigserver, and B. M. Spiegelman, “Transcriptional regulation of adipogenesis,” Genes and Development, vol. 14, no. 11, pp. 1293–1307, 2000. View at Scopus
  26. S. A. Kliewer and T. M. Willson, “The nuclear receptor PPARγ—bigger than fat,” Current Opinion in Genetics and Development, vol. 8, no. 5, pp. 576–581, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. B. M. Spiegelman, “PPAR-γ: adipogenic regulator and thiazolidinedione receptor,” Diabetes, vol. 47, no. 4, pp. 507–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Boizard, X. Le Liepvre, P. Lemarchand, F. Foufelle, P. Ferré, and I. Dugail, “Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors,” The Journal of Biological Chemistry, vol. 273, no. 44, pp. 29164–29171, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. N. R. Coe and D. A. Bernlohr, “Physiological properties and functions of intracellular fatty acid-binding proteins,” Biochimica et Biophysica Acta, vol. 1391, no. 3, pp. 287–306, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Magaña and T. F. Osborne, “Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter,” The Journal of Biological Chemistry, vol. 271, no. 51, pp. 32689–32694, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. J. B. Kim, H. M. Wright, M. Wright, and B. M. Spiegelman, “ADD1/SREBP1 activates PPARγ through the production of endogenous ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4333–4337, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. T. P. A. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. D. Lele, “Free radicals and antioxidants in human health: current status and future prospects,” Journal of Association of Physicians of India, vol. 52, pp. 794–804, 2004. View at Scopus
  33. A. Fernández-Sánchez, E. Madrigal-Santillán, M. Bautista et al., “Inflammation, oxidative stress, and obesity,” International Journal of Molecular Sciences, vol. 12, no. 5, pp. 3117–3132, 2011.
  34. Y. Kanda, T. Hinata, S. W. Kang, and Y. Watanabe, “Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells,” Life Sciences, vol. 89, no. 7-8, pp. 250–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Lee, “Effects of powdered pine needle (Pinus densiflora Sieb et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat,” The Korean Society of Food Science and Nutrition, vol. 32, no. 6, pp. 926–930, 2003.
  36. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipidperoxides in animaltissues by thiobarbituricacid reaction,” Analytical Biochemistry, vol. 95, pp. 351–358, 1979.
  37. C. Y. Hsu, Y. P. Chan, and J. Chang, “Antioxidant activity of extract from Polygonum cuspidatum,” Biological Research, vol. 40, no. 1, pp. 13–21, 2007. View at Scopus
  38. L. Rivera, R. Morón, M. Sánchez, A. Zarzuelo, and M. Galisteo, “Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats,” Obesity, vol. 16, no. 9, pp. 2081–2087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Kobori, S. Masumoto, Y. Akimoto, and H. Oike, “Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice,” Molecular Nutrition and Food Research, vol. 55, no. 4, pp. 530–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Ahn, H. Lee, S. Kim, J. Park, and T. Ha, “The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways,” Biochemical and Biophysical Research Communications, vol. 373, no. 4, pp. 545–549, 2008. View at Publisher · View at Google Scholar · View at Scopus