About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 630723, 11 pages
http://dx.doi.org/10.1155/2013/630723
Research Article

Systemic Revealing Pharmacological Signalling Pathway Networks in the Hippocampus of Ischaemia-Reperfusion Mice Treated with Baicalin

1Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
2Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
3Geriatric Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongzhimen, Beijing 100007, China

Received 17 May 2013; Accepted 26 July 2013

Academic Editor: Wei Jia

Copyright © 2013 Haixia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z.-J. Zhang, P. Li, Z. Wang et al., “A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury,” Brain Research, vol. 1123, no. 1, pp. 188–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Liu, Z. J. Zhang, C. X. Zhou et al., “Outcome-dependent global similarity analysis of imbalanced core signaling pathways in ischemic mouse hippocampus,” CNS & Neurological Disorders, vol. 11, no. 8, pp. 1070–1082, 2012.
  3. T. Chen, W. Liu, X. Chao et al., “Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway,” Neuroscience, vol. 183, pp. 203–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Zhang, M. Shen, M. Ding, D. Shen, and F. Ding, “The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway,” Toxicology and Applied Pharmacology, vol. 252, no. 1, pp. 62–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. V. A. DiNapoli, S. A. Benkovic, X. Li et al., “Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat,” Neuroscience, vol. 170, no. 2, pp. 633–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. O. A. Harari and J. K. Liao, “NF-κB and innate immunity in ischemic stroke,” Annals of the New York Academy of Sciences, vol. 1207, pp. 32–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Z.-H. Zhang, G.-M. Xi, W.-C. Li, H.-Y. Ling, P. Qu, and X.-B. Fang, “Cyclic-AMP response element binding protein and tau are involved in the neuroprotective mechanisms of nerve growth factor during focal cerebral ischemia/reperfusion in rats,” Journal of Clinical Neuroscience, vol. 17, no. 3, pp. 353–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. W. Zhuang, G. Z. Cui, Y. J. Zhang et al., “Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats,” CNS Neuroscience & Therapeutics, vol. 19, no. 3, pp. 154–162, 2013.
  9. O. Cheng, Z. Li, Y. Han, Q. Jiang, Y. Yan, and K. Cheng, “Baicalin improved the spatial learning ability of global iscaemia/reperfusion rats by reducing hippocampal apoptosis,” Brain Research, vol. 1470, pp. 111–1118, 2012.
  10. J. Dai, L. Chen, Y. M. Qiu et al., “Activations of GABAergic signalling, HSP70 and MAPK cascades are involved in baicalin's neuroprotection against gerbil global iscaemia/reperfusion injury,” Brain Research Bulletin, vol. 90, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  11. Y. Cao, X. Mao, C. Sun et al., “Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways,” Brain Research Bulletin, vol. 85, no. 6, pp. 396–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X.-K. Tu, W.-Z. Yang, R.-S. Liang et al., “Effect of baicalin on matrix metalloproteinase-9 expression and blood-brain barrier permeability following focal cerebral ischemia in rats,” Neurochemical Research, vol. 36, no. 11, pp. 2022–2028, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Xue, X.-J. Qu, Y. Yang et al., “Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation,” Biochemical and Biophysical Research Communications, vol. 403, no. 3-4, pp. 398–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Z.-J. Zhang, Z. Wang, X.-Y. Zhang, K. Ying, J.-X. Liu, and Y.-Y. Wang, “Gene expression profile induced by oral administration of baicalin and gardenin after focal brain ischemia in rats,” Acta Pharmacologica Sinica, vol. 26, no. 3, pp. 307–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Y. Li, Z. Y. Yuan, Y. G. Wang et al., “. Role of baicalin in regulating Toll-like receptor 2/4 after ischemic neuronal injury,” Chinese Medical Journal, vol. 125, no. 9, pp. 1586–11593, 2012.
  16. X.-K. Tu, W.-Z. Yang, S.-S. Shi et al., “Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia,” Inflammation, vol. 34, no. 5, pp. 463–470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. X.-K. Tu, W.-Z. Yang, S.-S. Shi, C.-H. Wang, and C.-M. Chen, “Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia,” Neurochemical Research, vol. 34, no. 9, pp. 1626–1634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhu, Z. Wang, Y. Xing et al., “Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells,” Journal of Ethnopharmacology, vol. 141, pp. 2–720, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Ingenuity Pathway AnalysisTM, http://www.ingenuity.com/.
  20. Encyclopaedia of Genes and Genomes, http://www.genome.jp/kegg/.
  21. L. Guo, F. Meng, G. Zhang et al., “Baicalin and jasminoidin effects on gene expression and compatibility in the hippocampus following focal cerebral ischemia,” Neural Regeneration Research, vol. 6, no. 3, pp. 167–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Chen, C. Zhou, Y. Yu et al., “Variations in target gene expression and pathway profiles in the mouse hippocampus following treatment with different effective compounds for iscaemia-reperfusion injury,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 385, no. 8, pp. 797–7806, 2012.
  23. GeneGo MetaCoreTM software, http://www.genego.com/, http://www.genego.com/metacore.php.
  24. M. Baitaluk, M. Sedova, A. Ray, and A. Gupta, “BiologicalNetworks: visualization and analysis tool for systems biology,” Nucleic Acids Research, vol. 34, pp. W466–W471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. van Leeuwen, M. Pedersen, L. E. Knudsen et al., “Transcriptomic network analysis of micronuclei-related genes: a case study,” Mutagenesis, vol. 26, no. 1, pp. 27–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Werner, “Bioinformatics applications for pathway analysis of microarray data,” Current Opinion in Biotechnology, vol. 19, no. 1, pp. 50–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Expression Analysis Systematic Explorer software (National Institute of Health, USA), http://david.abcc.ncifcrf.gov/ease/ease.jsp.
  29. D. A. Hosack, G. Dennis Jr., B. T. Sherman, H. C. Lane, and R. A. Lempicki, “Identifying biological themes within lists of genes with EASE,” Genome Biology, vol. 4, no. 10, p. R70, 2003. View at Scopus
  30. P. Lipton, “Ischemic cell death in brain neurons,” Physiological Reviews, vol. 79, no. 4, pp. 1431–1568, 1999. View at Scopus
  31. S. A. Dambinova, G. A. Khounteev, G. A. Izykenova, I. G. Zavolokov, A. Y. Ilyukhina, and A. A. Skoromets, “Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke,” Clinical Chemistry, vol. 49, no. 10, pp. 1752–1762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Zhang and C. Iadecola, “Temporal characteristics of the protective effect of aminoguanidine on cerebral ischemic damage,” Brain Research, vol. 802, no. 1-2, pp. 104–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-B. Zhang, M.-Y. Kan, Z.-H. Yang et al., “Neuroprotective effects of N-stearoyltyrosine on transient global cerebral ischemia in gerbils,” Brain Research, vol. 1287, pp. 146–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Ferrer, M. A. Soriano, A. Vidal, and A. M. Planas, “Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction,” Brain Research, vol. 692, no. 1-2, pp. 41–46, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Zhao, H.-W. Wu, Y.-J. Chen et al., “Protein phosphatase 2A-negative regulation of the protective signaling pathway of Ca2+/CaM-Dependent ERK activation in cerebral ischemia,” Journal of Neuroscience Research, vol. 86, no. 12, pp. 2733–2745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. H. A. Nijboer, A. Kavelaars, A. Vroon, F. Groenendaal, F. van Bel, and C. J. Heijnen, “Low endogenous G-protein-coupled receptor kinase 2 sensitizes the immature brain to hypoxia-ischemia-induced gray and white matter damage,” Journal of Neuroscience, vol. 28, no. 13, pp. 3324–3332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. W. Adams and J. H. Brown, “G-proteins in growth and apoptosis: lessons from the heart,” Oncogene, vol. 20, no. 13, pp. 1626–1634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. Unipro Consortium, http://www.uniprot.org/uniprot/Q16594.
  39. L. Tiberi, A. Faisal, M. Rossi, L. D. Tella, C. Franceschi, and S. Salvioli, “p66Shc gene has a pro-apoptotic role in human cell lines and it is activated by a p53-independent pathway,” Biochemical and Biophysical Research Communications, vol. 342, no. 2, pp. 503–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Yanagisawa, H. Osada, A. Masuda et al., “Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells,” Oncogene, vol. 17, no. 13, pp. 1743–1747, 1998. View at Scopus
  41. J. Wang and X. J. Xiong, “Current situation and perspectives of clinical study in integrative medicine in China,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 268542, 11 pages, 2012. View at Publisher · View at Google Scholar