About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 647452, 10 pages
http://dx.doi.org/10.1155/2013/647452
Research Article

A Metabolomics Profiling Study in Hand-Foot-and-Mouth Disease and Modulated Pathways of Clinical Intervention Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

1Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
2Department of Medicinal Chemistry of Nature Product, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
3Jiangxi Qingfeng Pharmaceutical Inc., Ganzhou 341000, China
4School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Received 12 November 2012; Revised 23 December 2012; Accepted 28 December 2012

Academic Editor: Wei Jia

Copyright © 2013 Cheng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Chen, C. Lu, Q. Zha et al., “A network-based analysis of traditional Chinese medicine cold and hot patterns in rheumatoid arthritis,” Complementary Therapies in Medicine, vol. 20, no. 1-2, pp. 23–30, 2012. View at Publisher · View at Google Scholar
  2. X. Wang, C. Zhu, W. Bao et al., “Characterization of full-length enterovirus 71 strains from severe and mild disease patients in northeastern China,” PLoS ONE, vol. 7, no. 3, Article ID e32405, 2012. View at Publisher · View at Google Scholar
  3. Y.-H. Chiu, Y.-L. Chan, L.-W. Tsai, T.-L. Li, and C.-J. Wu, “Prevention of human enterovirus 71 infection by kappa carrageenan,” Antiviral Research, vol. 95, no. 2, pp. 128–134, 2012. View at Publisher · View at Google Scholar
  4. Y. Yang, L. Zhang, X. Fan, C. Qin, and J. Liu, “Antiviral effect of geraniin on human enterovirus 71 in vitro and in vivo,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 6, pp. 2209–2211, 2012. View at Publisher · View at Google Scholar
  5. C. Wang, B. Cao, Q.-Q. Liu et al., “Oseltamivir compared with the Chinese traditional therapy maxingshigan-yinqiaosan in the treatment of H1N1 influenza: a randomized trial,” Annals of Internal Medicine, vol. 155, no. 4, pp. 217–226, 2011.
  6. B. Xue, Z. Yao, and R. Yu, “Studies on anti-EV71 virus activity of traditional Chinese medicine and its clinical application in treatment of HFMD,” Zhongguo Zhongyao Zazhi, vol. 36, no. 23, pp. 3366–3370, 2011. View at Publisher · View at Google Scholar
  7. C.-Y. Wang, S.-C. Huang, Y. Zhang et al., “Antiviral ability of Kalanchoe gracilis leaf extract against Enterovirus 71 and coxsackievirus A16,” Evidence-based Complementary and Alternative Medicine, vol. 2012, Article ID 503165, 13 pages, 2012. View at Publisher · View at Google Scholar
  8. A. E. Allen, C. L. Dupont, M. Oborník et al., “Evolution and metabolic significance of the urea cycle in photosynthetic diatoms,” Nature, vol. 473, no. 7346, pp. 203–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Dettmer and B. D. Hammock, “Metabolomics—a new exciting field within the “omics” sciences,” Environmental Health Perspectives, vol. 112, no. 7, pp. A396–A397, 2004. View at Scopus
  10. A. D. Maher, J. C. Lindon, and J. K. Nicholson, “H NMR-based metabonomics for investigating diabetes,” Future Medicinal Chemistry, vol. 1, no. 4, pp. 737–747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Van Wietmarschen, K. Yuan, C. Lu et al., “Systems biology guided by Chinese medicine reveals new markers for sub-typing rheumatoid arthritis patients,” Journal of Clinical Rheumatology, vol. 15, no. 7, pp. 330–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Gu, C. Lu, Q. Zha et al., “Plasma metabonomics study of rheumatoid arthritis and its Chinese medicine subtypes by using liquid chromatography and gas chromatography coupled with mass spectrometry,” Molecular BioSystems, vol. 8, no. 5, pp. 1535–1543, 2012. View at Publisher · View at Google Scholar
  13. H. Zhao, J. Li, X. He et al., “The protective effect of Yi Shen Juan Bi Pill in arthritic rats with castration-induced kidney deficiency,” Evidence-based Complementary and Alternative Medicine, vol. 2012, Article ID 102641, 8 pages, 2012. View at Publisher · View at Google Scholar
  14. H. Dong, A. Zhang, H. Sun et al., “Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods,” Molecular BioSystems, vol. 8, no. 4, pp. 1206–1221, 2012. View at Publisher · View at Google Scholar
  15. The Ministry of Health Guideline for the Diagnosis and Treatment of Hand Foot and Mouth Disease, The Ministry of Health of the People’s Republic of China, Beijing, China, 2010.
  16. Pharmacopoeia Committee of People's Republic of China: Chinese Pharmacopoeia, Beijing, China, 2010.
  17. W. B. Dunn, D. Broadhurst, P. Begley et al., “Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry,” Nature Protocols, vol. 6, no. 7, pp. 1060–1083, 2011. View at Publisher · View at Google Scholar
  18. Y. Lv, X. Liu, S. Yan et al., “Metabolomic study of myocardial ischemia and intervention effects of Compound Danshen Tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 1, pp. 129–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Tapp and E. K. Kemsley, “Notes on the practical utility of OPLS,” TrAC—Trends in Analytical Chemistry, vol. 28, no. 11, pp. 1322–1327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Jiang, W. Dai, S. Yan et al., “Potential biomarkers in the urine of myocardial infarction rats: a metabolomic method and its application,” Molecular BioSystems, vol. 7, no. 3, pp. 824–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. E. Williams, E. M. Lenz, J. A. Evans et al., “A combined 1H NMR and HPLC-MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats,” Journal of Pharmaceutical and Biomedical Analysis, vol. 38, no. 3, pp. 465–471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Taylor, S. Ganti, N. O. Bukanov et al., “A metabolomics approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney disease,” American Journal of Physiology, vol. 298, no. 4, pp. F909–F922, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. G. Godoy, E. P. A. Lopes, R. O. Silva et al., “Hepatitis C virus infection diagnosis using metabonomics,” Journal of Viral Hepatitis, vol. 17, no. 12, pp. 854–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Lin, N. Liu, Z. Yang et al., “GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus,” Talanta, vol. 83, no. 1, pp. 262–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. D. Maher, L. A. Cysique, B. J. Brew, and C. D. Rae, “Statistical integration of 1H NMR and MRS data from different biofluids and tissues enhances recovery of biological information from individuals with HIV-1 infection,” Journal of Proteome Research, vol. 10, no. 4, pp. 1737–1745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Deng, H. L. Jia, C. W. Liu et al., “Analysis of differentially expressed proteins involved in hand, foot and mouth disease and normal sera,” Clinical Microbiology and Infection, vol. 18, pp. E188–E196, 2012.
  27. G. L. Blackburn, “Lipid metabolism in infection,” American Journal of Clinical Nutrition, vol. 30, no. 8, pp. 1321–1332, 1977. View at Scopus
  28. M. P. Dubé and J. J. Cadden, “Lipid metabolism in treated HIV infection,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 25, no. 3, pp. 429–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Koike, T. Tsutsumi, H. Yotsuyanagi, and K. Moriya, “Lipid metabolism and liver disease in hepatitis C viral infection,” Oncology, vol. 78, supplement 1, pp. 24–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Negro, “Abnormalities of lipid metabolism in hepatitis C virus infection,” Gut, vol. 59, no. 9, pp. 1279–1287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Targett-Adams, S. Boulant, M. W. Douglas, and J. McLauchlan, “Lipid metabolism and HCV infection,” Viruses, vol. 2, no. 5, pp. 1195–1217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Kumashiro, D. M. Erion, D. Zhang et al., “Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 39, pp. 16381–16385, 2011. View at Publisher · View at Google Scholar
  33. D. H. Hamer, S. Bocklandt, L. McHugh et al., “Rational design of drugs that induce human immunodeficiency virus replication,” Journal of Virology, vol. 77, no. 19, pp. 10227–10236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Zhao, “Lantibiotics as probes for phosphatidylethanolamine,” Amino Acids, vol. 41, no. 5, pp. 1071–1079, 2011. View at Publisher · View at Google Scholar
  35. http://www.hmdb.ca/metabolites/HMDB00097.
  36. K. Weissenborn, A. B. Tryc, M. Heeren et al., “Hepatitis C virus infection and the brain,” Metabolic Brain Disease, vol. 24, no. 1, pp. 197–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Forton, J. M. Allsop, I. J. Cox et al., “A review of cognitive impairment and cerebral metabolite abnormalities in patients with hepatitis C infection,” AIDS, vol. 19, supplement 3, pp. S53–S63, 2005. View at Scopus
  38. E. Castellano and J. Downward, “Role of RAS in the regulation of PI 3-kinase,” Current topics in Microbiology and Immunology, vol. 346, pp. 143–169, 2010. View at Scopus
  39. D. Fu, C. R. Li, Y. X. He et al., “Changes of immune function in patients with enterovirus 71 infection,” Chinese Journal of Pediatrics, vol. 47, no. 11, pp. 829–834, 2009. View at Scopus
  40. G. A. Koroleva, A. N. Lukashev, L. V. Khudyakova, A. N. Mustafina, and V. A. Lashkevich, “Encephalomyelitis caused by enterovirus type 71 in children,” Voprosy Virusologii, vol. 55, no. 6, pp. 4–10, 2010. View at Scopus
  41. Y. Nishimura, M. Shimojima, Y. Tano, T. Miyamura, T. Wakita, and H. Shimizu, “Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71,” Nature Medicine, vol. 15, no. 7, pp. 794–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. W. X. Khong, D. G. W. Foo, S. L. Trasti, E. L. Tan, and S. Alonso, “Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model,” Journal of Virology, vol. 85, no. 7, pp. 3067–3076, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. http://www.hmdb.ca/metabolites/HMDB00301.
  44. K. Kaneko, U. Smetana-Just, M. Matsui et al., “Cis-urocanic acid initiates gene transcription in primary human keratinocytes,” Journal of Immunology, vol. 181, no. 1, pp. 217–224, 2008. View at Scopus
  45. D. Sakata, C. Yao, and S. Narumiya, “Prostaglandin E2, an immunoactivator,” Journal of Pharmacological Sciences, vol. 112, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. M. Castorena, K. A. Stapleford, and D. J. Miller, “Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication,” BMC Genomics, vol. 11, no. 1, article 183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. G. N. Angus, A. Loquet, S. J. Stack et al., “Conserved glycine 33 residue in flexible domain I of hepatitis C virus core protein is critical for virus infectivity,” Journal of Virology, vol. 86, no. 2, pp. 679–690, 2012. View at Publisher · View at Google Scholar
  48. S. Wu, T. Kanda, F. Imazeki et al., “Hepatitis B virus e antigen physically associates with receptor-interacting serine/threonine protein kinase 2 and regulates IL-6 gene expression,” Journal of Infectious Diseases, vol. 206, no. 3, pp. 415–420, 2012. View at Publisher · View at Google Scholar