About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 659165, 13 pages
http://dx.doi.org/10.1155/2013/659165
Research Article

Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

1Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 México, DF, Mexico
2Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Edificio F, Segundo Piso, Laboratorio 209, 04510 México, DF, Mexico
3Servicio de Endocrinología, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 México, DF, Mexico
4Departamento de Biología Celular, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, 11200 México, DF, Mexico
5Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México 04510 México, DF, Mexico

Received 24 October 2012; Revised 7 December 2012; Accepted 12 December 2012

Academic Editor: José Luis Ríos

Copyright © 2013 Elvia Coballase-Urrutia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Nueva York, NY, USA, 4th edition, 2007.
  2. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Jomova, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar
  4. M. H. Carlsen, B. L. Halvorsen, K. Holte et al., “The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide,” Nutrition Journal, vol. 9, no. 1, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Khan and H. Mukhtar, “Tea polyphenols for health promotion,” Life Sciences, vol. 81, no. 7, pp. 519–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. E. Seifried, D. E. Anderson, E. I. Fisher, and J. A. Milner, “A review of the interaction among dietary antioxidants and reactive oxygen species,” Journal of Nutritional Biochemistry, vol. 18, no. 9, pp. 567–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. K. Manibusan, M. Odin, and D. A. Eastmond, “Postulated carbon tetrachloride mode of action: A review,” Journal of Environmental Science and Health—Part C, vol. 25, no. 3, pp. 185–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Szymonik-Lesiuk, G. Czechowska, M. Stryjecka-Zimmer et al., “Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 10, no. 4, pp. 309–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Güven, A. Güven, and M. Gülmez, “The effect of kefir on the activities of GSH- Px,GST,CAT,GSH and LPO levels in carbon tetrachloride-induced mice tissue,” Journal of Veterinary Medicine Series B, vol. 50, no. 8, pp. 412–416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ruprah, T. G. K. Mant, and R. J. Flanagan, “Acute carbon tetrachloride poisoning in 19 patients: Implications for diagnosis and treatment,” The Lancet, vol. 1, no. 8436, pp. 1027–1029, 1985. View at Scopus
  11. G. C. De Rzedowski and J. Rzedowski, “Heterotheca inuloides,” in Flora Fanerogámica del Valle de México, G. C. Rzedowski and J. Rzedowski, Eds., p. 1406, Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, México, 2001.
  12. T. Jayakumar, M. Sakthivel, P. A. Thomas, and P. Geraldine, “Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain,” Chemico-Biological Interactions, vol. 176, no. 2-3, pp. 108–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Coballase-Urrutia, J. Pedraza-Chaverri, N. Cárdenas-Rodríguez et al., “Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl4-induced toxicity in rats,” Experimental and Toxicologic Pathology, vol. 63, no. 4, pp. 363–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. N. A. Botsoglou, I. A. Taitzoglou, E. Botsoglou, S. N. Lavrentiadou, A. N. Kokoli, and N. Roubies, “Effect of long-term dietary administration of Oregano on the alleviation of carbon tetrachloride-induced oxidative stress in rats,” Journal of Agricultural and Food Chemistry, vol. 56, no. 15, pp. 6287–6293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Taddei-Bringas, M. A. Santillana-Macedo, J. A. Romero-Cancio, and M. B. Romero-Téllez, “Acceptance and use of therapeutic medical plants in family medical care,” Salud Pública de México, vol. 41, no. 3, pp. 216–220, 1999.
  16. M. Martínez, Las Plantas Medicinales de México, Botas, México, 7th edition, 1992.
  17. M. Martínez, Catálogo de Nombres Vulgares Y Científicos de Plantas Mexicanas, Fondo de Cultura Económica, 1984.
  18. E. Coballase-Urrutia, J. Pedraza-Chaverri, R. Camacho-Carranza et al., “Antioxidant activity of Heterotheca inuloides extracts and of some of its metabolites,” Toxicology, vol. 276, no. 1, pp. 41–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Kubo, S. K. Chaudhuri, Y. Kubo et al., “Cytotoxic and antioxidative sesquiterpenoids from Heterotheca inuloides,” Planta Medica, vol. 62, no. 5, pp. 427–430, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Haraguchi, H. Ishikawa, Y. Sanchez, T. Ogura, Y. Kubo, and I. Kubo, “Antioxidative constituents in Heterotheca inuloides,” Bioorganic and Medicinal Chemistry, vol. 5, no. 5, pp. 865–871, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Haraguchi, T. Saito, H. Ishikawa, Y. Sanchez, T. Ogura, and I. Kubo, “Inhibition of lipid peroxidation by sesquiterpenoid in Heterotheca inuloides,” Journal of Pharmacy and Pharmacology, vol. 48, no. 4, pp. 441–443, 1996. View at Scopus
  22. G. Delgado, M. Del Socorro Olivares, M. I. Chávez et al., “Antiinflammatory constituents from Heterotheca inuloides,” Journal of Natural Products, vol. 64, no. 7, pp. 861–864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Kubo, H. Muroi, A. Kubo, S. K. Chaudhuri, Y. Sanchez, and T. Ogura, “Antimicrobial agents from Heterotheca inuloides,” Planta Medica, vol. 60, no. 3, pp. 218–221, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. E. A. Ainsworth and K. M. Gillespie, “Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent,” Nature Protocols, vol. 2, no. 4, pp. 875–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chemistry, vol. 64, no. 4, pp. 555–559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  27. J. Pedraza-Chaverrí, D. Barrera, O. N. Medina-Campos et al., “Time course study of oxidative and nitrosative stress and antioxidant enzymes in K2Cr2O7-induced nephrotoxicity,” BMC Nephrology, vol. 6, article 4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Santamaría, A. Flores-Escartín, J. C. Martínez, L. Osorio, S. Galván-Arzate, et al., “Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems,” Free Radical Biology and Medicine, vol. 35, no. 4, pp. 418–427, 2003.
  29. T. Finkel, “Signal transduction by reactive oxygen species,” Journal of Cell Biology, vol. 194, no. 1, pp. 7–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Spiteller, “Is lipid peroxidation of polyunsaturated acids the only source of free radicals that induce aging and age-related diseases?” Rejuvenation Research, vol. 13, no. 1, pp. 91–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Catalá, “Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions,” Chemistry and Physics of Lipids, vol. 157, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Altaş, G. Kızıl, M. Kızıl, A. Ketani, and P. I. Haris, “Protective effect of Diyarbakır watermelon juice on carbon tetrachloride-induced toxicity in rats,” Food and Chemical Toxicology, vol. 49, no. 9, pp. 2433–2438, 2011.
  33. N. Botsoglou, I. Taitzoglou, I. Zervos, E. Botsoglou, M. Tsantarliotou, and P. S. Chatzopoulou, “Potential of long-term dietary administration of rosemary in improving the antioxidant status of rat tissues following carbon tetrachloride intoxication,” Food and Chemical Toxicology, vol. 48, no. 3, pp. 944–950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Smyth, M. R. Munday, M. J. York, C. J. Clarke, T. Dare, and J. A. Turton, “Comprehensive characterization of serum clinical chemistry parameters and the identification of urinary superoxide dismutase in a carbon tetrachloride-induced model of hepatic fibrosis in the female Hanover Wistar rat,” International Journal of Experimental Pathology, vol. 88, no. 5, pp. 361–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Smyth, J. A. Turton, C. J. Clarke et al., “Identification of superoxide dismutase as a potential urinary marker of carbon tetrachloride-induced hepatic toxicity,” Food and Chemical Toxicology, vol. 46, no. 9, pp. 2972–2983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. U. Y. Sanzgiri, V. Srivatsan, S. Muralidhara, C. E. Dallas, and J. V. Bruckner, “Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures,” Toxicology and Applied Pharmacology, vol. 143, no. 1, pp. 120–129, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Annadurai, S. Vigneshwari, R. Thirukumaran, P. A. Thomas, and P. Geraldine, “Acetyl-:L-carnitine prevents carbon tetrachloride-induced oxidative stress in various tissues of Wistar rats,” Journal of Physiology and Biochemistry, vol. 67, no. 4, pp. 519–530, 2011.
  38. S. Raja, K. F. H. N. Ahamed, V. Kumar, K. Mukherjee, A. Bandyopadhyay, and P. K. Mukherjee, “Antioxidant effect of Cytisus scoparius against carbon tetrachloride treated liver injury in rats,” Journal of Ethnopharmacology, vol. 109, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. T. D. Randall, “Bronchus-Associated Lymphoid Tissue (BALT). Structure and function,” Advances in Immunology, vol. 107, pp. 187–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. L. Laskin and K. J. Pendino, “Macrophages and inflammatory mediators in tissue injury,” Annual Review of Pharmacology and Toxicology, vol. 35, pp. 655–677, 1995. View at Scopus
  41. L. A. Boer, J. P. Panatto, D. A. Fagundes et al., “Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by carbon tetrachloride is reversed by antioxidants,” Brain Research Bulletin, vol. 80, no. 1-2, pp. 75–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Hassan, M. Edfaway, A. Mansour, and A. A. Hamed, “Antioxidant and antiapoptotic effects of capsaicin against carbon tetrachloride-induced hepatotoxicity in rats,” Toxicology and Industrial Health, vol. 28, no. 5, pp. 428–438, 2012.
  43. K. V. Anand, R. Anandhi, M. Pakkiyaraj, and P. Geraldine, “Protective effect of chrysin on carbon tetrachloride (CCI4)-induced tissue injury in male Wistar rats,” Toxicology and Industrial Health, vol. 27, no. 10, pp. 923–933, 2011.
  44. S. A. Ganie, E. Haq, A. Hamid et al., “Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum,” BMC Complementary and Alternative Medicine, vol. 11, article 17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C. V. Smith, D. P. Jones, T. M. Guenthner, L. H. Lash, and B. H. Lauterburg, “Compartmentation of glutathione: Implications for the study of toxicity and disease,” Toxicology and Applied Pharmacology, vol. 140, no. 1, pp. 1–12, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. G. L. Gaunt and C. De Duve, “Subcellular distribution of d amino acid oxidase and catalase in rat brain,” Journal of Neurochemistry, vol. 26, no. 4, pp. 749–759, 1976. View at Scopus
  47. R. Dringen, “Metabolism and functions of glutathione in brain,” Progress in Neurobiology, vol. 62, no. 6, pp. 649–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. L. P. Manoli, G. D. Gamaro, P. P. Silveira, and C. Dalmaz, “Effect of chronic variate stress on thiobarbituric-acid reactive species and on total radical-trapping potential in distinct regions of rat brain,” Neurochemical Research, vol. 25, no. 7, pp. 915–921, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. B. S. Baek, H. J. Kwon, K. H. Lee et al., “Regional difference of ROS generation, lipid peroxidaton, and antioxidant enzyme activity in rat brain and their dietary modulation,” Archives of Pharmacal Research, vol. 22, no. 4, pp. 361–366, 1999. View at Scopus
  50. B. S. Mandavilli and K. Subba, “Neurons in the cerebral cortex are most susceptible to DNA-damage in aging rat brain,” Biochemistry and Molecular Biology International, vol. 40, no. 3, pp. 507–514, 1996. View at Scopus
  51. P. Arivazhagan, S. Shila, S. Kumaran, and C. Panneerselvam, “Effect of DL-α-lipoic acid on the status of lipid peroxidation and antioxidant enzymes in various brain regions of aged rats,” Experimental Gerontology, vol. 37, no. 6, pp. 803–811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. J. L. M. Madrigal, R. Olivenza, M. A. Moro et al., “Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain,” Neuropsychopharmacology, vol. 24, no. 4, pp. 420–429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. J. N. Keller, R. J. Mark, A. J. Bruce et al., “4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes,” Neuroscience, vol. 80, no. 3, pp. 685–696, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. H. M. Schipper, “Brain iron deposition and the free radical-mitochondrial theory of ageing,” Ageing Research Reviews, vol. 3, no. 3, pp. 265–301, 2004. View at Publisher · View at Google Scholar · View at Scopus