About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 685642, 13 pages
http://dx.doi.org/10.1155/2013/685642
Research Article

Antidiabetic Effect and Mode of Action of Cytopiloyne

1Department of Veterinary Medicine, National Chung Hsing University, 402 Taichung, Taiwan
2Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, 115 Taipei, Taiwan
3Research Center, China Medical University and Hospital, Graduate Institute of Clinical Medical Sciences, China Medical University, 40402 Taichung, Taiwan
4Institute of Zoology, National Taiwan University, 10617 Taipei, Taiwan
5Department of Life Sciences, National Chung Hsing University, 402 Taichung, Taiwan

Received 3 November 2012; Accepted 29 January 2013

Academic Editor: Srinivas Nammi

Copyright © 2013 Cicero Lee-Tian Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Wicksteed, C. Alarcon, I. Briaud, M. K. Lingohr, and C. J. Rhodes, “Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet β-cells but not regulated via a positive feedback of secreted insulin,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 42080–42090, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Newsholme, C. Gaudel, and N. H. McClenaghan, “Nutrient regulation of insulin secretion and β-cell functional integrity,” Advances in Experimental Medicine and Biology, vol. 654, pp. 91–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Laakso, “Insulin resistance and its impact on the approach to therapy of type 2 diabetes,” International Journal of Clinical Practice, Supplement, no. 121, pp. 8–12, 2001. View at Scopus
  4. R. S. Clements and D. S. H. Bell, “Complications of diabetes: prevalence, detection, current treatment, and prognosis,” American Journal of Medicine, vol. 79, no. 5, pp. 2–7, 1985. View at Scopus
  5. J. P. Boyle, M. M. Engelgau, T. J. Thompson et al., “Estimating prevalence of type 1 and type 2 diabetes in a population of African Americans with diabetes mellitus,” American Journal of Epidemiology, vol. 149, no. 1, pp. 55–63, 1999. View at Scopus
  6. A. S. Attele, Y. P. Zhou, J. T. Xie et al., “Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component,” Diabetes, vol. 51, no. 6, pp. 1851–1858, 2002. View at Scopus
  7. A. J. Krentz and C. J. Bailey, “Oral antidiabetic agents: current role in type 2 diabetes mellitus,” Drugs, vol. 65, no. 3, pp. 385–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. C. S. Howlett and C. J. Bailey, “A risk-benefit assessment of metformin in type 2 diabetes mellitus,” Drug Safety, vol. 20, no. 6, pp. 489–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Q. Purnell and C. Weyer, “Weight effect of current and experimental drugs for diabetes mellitus: from promotion to alleviation of obesity,” Treatments in Endocrinology, vol. 2, no. 1, pp. 33–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Egan, A. Bulotta, H. Hui, and R. Perfetti, “GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells,” Diabetes/Metabolism Research and Reviews, vol. 19, no. 2, pp. 115–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Marles and N. R. Farnsworth, “Antidiabetic plants and their active constituents,” Phytomedicine, vol. 2, no. 2, pp. 137–189, 1995. View at Scopus
  12. M. Habeck, “Diabetes treatments get sweet help from nature,” Nature Medicine, vol. 9, no. 10, p. 1228, 2003. View at Scopus
  13. A. Y. Oubré, T. J. Carlson, S. R. King, and G. M. Reaven, “From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM,” Diabetologia, vol. 40, no. 5, pp. 614–617, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. F. J. Alarcon-Aguilar, R. Roman-Ramos, J. L. Flores-Saenz, and F. Aguirre-Garcia, “Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice,” Phytotherapy Research, vol. 16, no. 4, pp. 383–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Lin, “Crude drugs used for the treatment of diabetes mellitus in Taiwan,” American Journal of Chinese Medicine, vol. 20, no. 3-4, pp. 269–279, 1992. View at Scopus
  16. R. P. Ubillas, C. D. Mendez, S. D. Jolad et al., “Antihyperglycemic acetylenic glucosides from Bidens pilosa,” Planta Medica, vol. 66, no. 1, pp. 82–83, 2000. View at Scopus
  17. S. L. Chang, C. L. T. Chang, Y. M. Chiang et al., “Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice,” Planta Medica, vol. 70, no. 11, pp. 1045–1051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. T. Chang, S. L. Chang, Y. M. Lee et al., “Cytopiloyne, a polyacetylenic glucoside, prevents type 1 diabetes in nonobese diabetic mice,” Journal of Immunology, vol. 178, no. 11, pp. 6984–6993, 2007. View at Scopus
  19. S. C. Chien, P. H. Young, Y. J. Hsu et al., “Anti-diabetic properties of three common Bidens pilosa variants in Taiwan,” Phytochemistry, vol. 70, no. 10, pp. 1246–1254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. J. Hsu, T. H. Lee, C. L. T. Chang, Y. T. Huang, and W. C. Yang, “Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract,” Journal of Ethnopharmacology, vol. 122, no. 2, pp. 379–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Harrity, D. Farrelly, A. Tieman et al., “Muraglitazar, a novel dual (α/γ) peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db/db mice,” Diabetes, vol. 55, no. 1, pp. 240–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. W. Cardinal, D. J. Allan, and D. P. Cameron, “Differential metabolite accumulation may be the cause of strain differences in sensitivity to streptozotocin-induced β cell death in inbred mice,” Endocrinology, vol. 139, no. 6, pp. 2885–2891, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Surwit, M. F. Seldin, C. M. Kuhn, C. Cochrane, and M. N. Feinglos, “Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice,” Diabetes, vol. 40, no. 1, pp. 82–87, 1991. View at Scopus
  24. W. T. Cefalu, “Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition,” ILAR Journal, vol. 47, no. 3, pp. 186–198, 2006. View at Scopus
  25. I. Miwa, N. Ichimura, M. Sugiura, Y. Hamada, and S. Taniguchi, “Inhibition of glucose-induced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products,” Endocrinology, vol. 141, no. 8, pp. 2767–2772, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. H. H. Sung, J. H. Juang, Y. C. Lin et al., “Transgenic expression of decoy receptor 3 protects islets from spontaneous and chemical-induced autoimmune destruction in nonobese diabetic mice,” Journal of Experimental Medicine, vol. 199, no. 8, pp. 1143–1151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Scopus
  28. D. R. Garris and B. L. Garris, “Estrogenic restoration of functional pancreatic islet cytoarchitecture in diabetes (db/db) mutant C57BL/KsJ mice: relationship to estradiol localization, systemic glycemia, and persistent hyperinsulinemia,” Cell and Tissue Research, vol. 319, no. 2, pp. 231–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. E. H. Leiter and C. H. Lee, “Mouse models and the genetics of diabetes: is there evidence for genetic overlap between type 1 and type 2 diabetes?” Diabetes, vol. 54, no. 2, pp. S151–S158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Yamanaka, Y. Itakura, A. Tsuchida, T. Nakagawa, and M. Taiji, “Brain-derived neurotrophic factor (BDNF) prevents the development of diabetes in prediabetic mice,” Biomedical Research, vol. 29, no. 3, pp. 147–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. L. Howell, P. M. Jones, and S. J. Persaud, “Protein kinase C and the regulation of insulin secretion,” Biochemical Society Transactions, vol. 18, no. 1, pp. 114–116, 1990. View at Scopus
  32. S. L. Howell, P. M. Jones, and S. J. Persand, “Regulation of insulin secretion: the role of second messengers,” Diabetologia, vol. 37, no. 2, pp. S30–S35, 1994. View at Scopus
  33. P. M. Jones, S. J. Persaud, and S. L. Howell, “Protein kinase C and the regulation of insulin secretion from pancreatic B cells,” Journal of Molecular Endocrinology, vol. 6, no. 2, pp. 121–127, 1991. View at Scopus
  34. S. J. Persaud, P. M. Jones, D. Sugden, and S. L. Howell, “Translocation of protein kinase C in rat islets of Langerhans. Effects of a phorbol ester, carbachol and glucose,” FEBS Letters, vol. 245, no. 1-2, pp. 80–84, 1989. View at Publisher · View at Google Scholar · View at Scopus
  35. S. G. Straub and G. W. G. Sharp, “Glucose-stimulated signaling pathways in biphasic insulin secretion,” Diabetes/Metabolism Research and Reviews, vol. 18, no. 6, pp. 451–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Ohneda, H. Ee, and M. German, “Regulation of insulin gene transcription,” Seminars in Cell and Developmental Biology, vol. 11, no. 4, pp. 227–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Alarcon, B. Wicksteed, and C. J. Rhodes, “Exendin 4 controls insulin production in rat islet beta cells predominantly by potentiation of glucose-stimulated proinsulin biosynthesis at the translational level,” Diabetologia, vol. 49, no. 12, pp. 2920–2929, 2006. View at Publisher · View at Google Scholar · View at Scopus