About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 689865, 12 pages
http://dx.doi.org/10.1155/2013/689865
Research Article

Apoptosis Effect of Girinimbine Isolated from Murraya koenigii on Lung Cancer Cells In Vitro

1Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Medical Research Centre, Jazan University, P.O. Box 114, 45 142 Jazan, Saudi Arabia
3Centre for Natural Products and Drug Discovery (CENAR), Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Faculty of Medicine & Health Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
5Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Malaysia
6UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Malaysia

Received 7 November 2012; Revised 20 January 2013; Accepted 6 February 2013

Academic Editor: Weena Jiratchariyakul

Copyright © 2013 Syam Mohan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Field and S. W. Duffy, “Lung cancer screening: the way forward,” British Journal of Cancer, vol. 99, no. 4, pp. 557–562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Yoon, J. H. Park, J. Han et al., “A genome-wide association study reveals susceptibility variants for nonsmall cell lung cancer in the Korean population,” Human Molecular Genetics, vol. 19, no. 24, Article ID ddq421, pp. 4948–4954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Cartei, F. Cartei, A. Cantone et al., “Cisplatin-cyclophosphamide-mitomycin combination chemotherapy with supportive care versus supportive care alone for treatment of metastatic non- small-cell lung cancer,” Journal of the National Cancer Institute, vol. 85, no. 10, pp. 794–800, 1993. View at Scopus
  4. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  6. J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, and A. A. Adjei, “Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship,” Mayo Clinic Proceedings, vol. 83, no. 5, pp. 584–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Diwanay, D. Chitre, and B. Patwardhan, “Immunoprotection by botanical drugs in cancer chemotherapy,” Journal of Ethnopharmacology, vol. 90, no. 1, pp. 49–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. U. M. Thatte and S. A. Dahanukar, “Rasayana Concept: clues from immunomodulatory therapy,” in An Annotated Bibliography of Indian Medicine, S. N. Upadhyay, Ed., pp. 141–148, 1997.
  9. A. S. Shah, A. S. Wakade, and A. R. Juvekar, “Immunomodulatory activity of methanolic extract of Murraya koenigii (L) Spreng. leaves,” Indian Journal of Experimental Biology, vol. 46, no. 7, pp. 505–509, 2008. View at Scopus
  10. R. B. Goswamia, P. K. S. Singha, N. Goswamib, P. Thomasd, P. U. Devic, and A. K. Pathakd, “Studies on antigenotoxic effect of Murraya koenigii leaves,” International Journal of Pharma Recent Research, vol. 2, pp. 65–68, 2010.
  11. R. S. Ramsewak, M. G. Nair, G. M. Strasburg, D. L. DeWitt, and J. L. Nitiss, “Biologically active carbazole alkaloids from Murraya koenigii,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 444–447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. P. Chakraborty, B. K. Barman, and P. K. Bose, “Structure of girinimbine, a pyranocarbazole derivative isolated from Murraya koenigii Spreng,” Scientific Culture, vol. 30, pp. 445–448, 1964.
  13. L. J. M. Rao, K. Ramalakshmi, B. B. Borse, and B. Raghavan, “Antioxidant and radical-scavenging carbazole alkaloids from the oleoresin of curry leaf (Murraya koenigii Spreng.),” Food Chemistry, vol. 100, no. 2, pp. 742–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Wang, B. Cai, C. B. Cui, S. Y. Yan, and C. F. Wu, “Induction of apoptosis by girinimbine in K562 cell,” Chinese Traditional and Herbal Drugs, vol. 38, no. 11, pp. 1677–1681, 2007. View at Scopus
  15. S. Syam, A. B. Abdul, M. A. Sukari, S. Mohan, S. I. Abdelwahab, and T. S. Wah, “The growth suppressing effects of girinimbine on Hepg2 involve induction of apoptosis and cell cycle arrest,” Molecules, vol. 16, pp. 7155–7170, 2011.
  16. A. Bakar, N. Haslizawati, M. A. Sukari et al., “Chemical constituents from stem barks and roots of Murraya koenigii (Rutaceae),” The Malaysian Journal of Analytical Sciences, vol. 11, pp. 173–176, 2007.
  17. S. I. A. Wahab, A. B. Abdul, S. M. Mohan, A. S. Al-Zubairi, M. M. Elhassan, and M. Y. Ibrahim, “Biological activities of Pereskia bleo extracts,” International Journal of Pharmacology, vol. 5, no. 1, pp. 71–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Bossy-Wetzel and D. R. Green, “Detection of apoptosis by annexin V labeling,” Methods in Enzymology, vol. 322, pp. 15–18, 2000. View at Scopus
  19. H. Wang and J. A. Joseph, “Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 612–616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. C. Cheah, D. R. Appleton, S. T. Lee, M. L. Lam, A. H. A. Hadi, and M. R. Mustafa, “Panduratin a inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-KappaB translocation,” Molecules, vol. 16, no. 3, pp. 2583–2598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Foghsgaard, D. Wissing, D. Mauch et al., “Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor,” Journal of Cell Biology, vol. 153, no. 5, pp. 999–1009, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kågedal, U. Johansson, and K. Ollinger, “The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress,” The FASEB journal, vol. 15, no. 9, pp. 1592–1594, 2001.
  23. M. A. Birch-Machin and H. Swalwell, “How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue,” Mutagenesis, vol. 25, no. 2, pp. 101–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Meister, B. Frey, V. R. Lang et al., “Calcium channel blocker verapamil enhances endoplasmic reticulum stress and cell death induced by proteasome inhibition in myeloma cells,” Neoplasia, vol. 12, no. 7, pp. 550–561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Mohan, A. B. Abdul, S. I. Abdelwahab et al., “Typhonium flagelliforme induces apoptosis in CEMss cells via activation of caspase-9, PARP cleavage and cytochrome c release: its activation coupled with G0/G1 phase cell cycle arrest,” Journal of Ethnopharmacology, vol. 131, no. 3, pp. 592–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Åberg, M. Johnell, M. Wickström, and A. Siegbahn, “Tissue Factor/ FVIIa prevents the extrinsic pathway of apoptosis by regulation of the tumor suppressor Death-Associated Protein Kinase 1 (DAPK1),” Thrombosis Research, vol. 127, no. 2, pp. 141–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Nigam, N. Singh, V. Ranjan et al., “Centchroman mediated apoptosis involves cross-talk between extrinsic/intrinsic pathways and oxidative regulation,” Life Sciences, vol. 87, no. 23–26, pp. 750–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. O. S. Frankfurt and A. Krishan, “Apoptosis-based drug screening and detection of selective toxicity to cancer cells,” Anti-Cancer Drugs, vol. 14, no. 7, pp. 555–561, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. van Engeland, L. J. W. Nieland, F. C. S. Ramaekers, B. Schutte, and C. P. M. Reutelingsperger, “Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure,” Cytometry, vol. 31, no. 1, pp. 1–9, 1998.
  31. G. A. Joanitti, R. B. Azevedo, and S. M. Freitas, “Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds,” Cancer Letters, vol. 293, no. 1, pp. 73–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Kirkegaard and M. Jäättelä, “Lysosomal involvement in cell death and cancer,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1793, no. 4, pp. 746–754, 2009. View at Publisher · View at Google Scholar
  33. A. C. Johansson, H. Appelqvist, C. Nilsson, K. Kågedal, K. Roberg, and K. Öllinger, “Regulation of apoptosis-associated lysosomal membrane permeabilization,” Apoptosis, vol. 15, no. 5, pp. 527–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wen, K. R. You, S. Y. Lee, C. H. Song, and D. G. Kim, “Oxidative stress-mediated apoptosis: the anticancer effect of the sesquiterpene lactone parthenolide,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38954–38964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Fleury, B. Mignotte, and J. L. Vayssière, “Mitochondrial reactive oxygen species in cell death signaling,” Biochimie, vol. 84, no. 2-3, pp. 131–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Verhagen, P. G. Ekert, M. Pakusch et al., “Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins,” Cell, vol. 102, no. 1, pp. 43–53, 2000. View at Scopus
  37. N. Ajenjo, E. Canoñón, I. Sánchez-Pérez et al., “Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32813–32823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, “The expanding role of mitochondria in apoptosis,” Genes and Development, vol. 15, no. 22, pp. 2922–2933, 2001. View at Scopus
  39. Y. A. Hannun, “Apoptosis and the dilemma of cancer chemotherapy,” Blood, vol. 89, no. 6, pp. 1845–1853, 1997. View at Scopus
  40. F. L. Scott, J. B. Denault, S. J. Riedl, H. Shin, M. Renatus, and G. S. Salvesen, “XIAP inhibits caspase-3 and -7 using two binding sites: evolutionary conserved mechanism of IAPs,” EMBO Journal, vol. 24, no. 3, pp. 645–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Cory and J. M. Adams, “The BCL2 family: regulators of the cellular life-or-death switch,” Nature Reviews Cancer, vol. 2, no. 9, pp. 647–656, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. B. Bratton and G. M. Cohen, “Death receptors leave a caspase footprint that Smacs of XIAP,” Cell Death and Differentiation, vol. 10, no. 1, pp. 4–6, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Zamzami and G. Kroemer, “The mitochondrion in apoptosis: how Pandora's box opens,” Nature Reviews Molecular Cell Biology, vol. 2, no. 1, pp. 67–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Marzo, C. Brenner, N. Zamzami et al., “Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis,” Science, vol. 281, no. 5385, pp. 2027–2031, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. M. D. Esposti, “The roles of Bid,” Apoptosis, vol. 7, no. 5, pp. 433–440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. N. E. Allen, A. W. Roddam, D. S. Allen et al., “A prospective study of serum insulin-like growth factor-I (IGF-I), IGF-II, IGF-binding protein-3 and breast cancer risk,” British Journal of Cancer, vol. 92, no. 7, pp. 1283–1287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Buckbinder, R. Talbott, S. Velasco-Miguel et al., “Induction of the growth inhibitor IGF-binding protein 3 by p53,” Nature, vol. 377, no. 6550, pp. 646–649, 1995. View at Scopus
  48. E. Ruoslahti, “Fibronectin and its integrin receptors in cancer,” Advances in Cancer Research, vol. 76, pp. 18–20, 1999. View at Scopus
  49. B. S. Schütt, M. Langkamp, U. Rauschnabel, M. B. Ranke, and M. W. Elmlinger, “Integrin-mediated action of insulin-like factor binding protein-2 in tumor cells,” Journal of Molecular Endocrinology, vol. 32, no. 3, pp. 859–868, 2004. View at Publisher · View at Google Scholar · View at Scopus