About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 697390, 13 pages
http://dx.doi.org/10.1155/2013/697390
Review Article

Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin

Department of Food Science, College of Food Engineering, State University of Campinas, Monteiro Lobato Street n.80, P.O. Box 6177, 13083-862 Campinas, SP, Brazil

Received 25 January 2013; Accepted 12 March 2013

Academic Editor: Ewelina Szliszka

Copyright © 2013 Viviane Cristina Toreti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Greenaway, T. Scaysbrook, and F. R. Whately, “The composition and plant origin of propolis: a report of work Oxford,” Bee World, vol. 71, no. 3, pp. 107–118, 1990.
  2. E. L. Ghisalberti, “Propolis: a review,” Bee World, vol. 60, no. 2, pp. 59–84, 1979.
  3. T. Matsuno, Y. Matsumoto, M. Saito, and J. Morikawa, “Isolation and characterization of cytotoxic diterpenoid isomers from propolis,” Zeitschrift für Naturforschung C, vol. 52, no. 9-10, pp. 702–704, 1997. View at Scopus
  4. N. Vynograd, I. Vynograd, and Z. Sosnowski, “A comparative multi-centre study of the efficacy of propolis, acyclovir and placebo in the treatment of genital herpes (HSV),” Phytomedicine, vol. 7, no. 1, pp. 1–6, 2000. View at Scopus
  5. T. Kimoto, M. Aga, K. Hino et al., “Apoptosis of human leukemia cells induced by Artepillin C, an active ingredient of Brazilian propolis,” Anticancer Research, vol. 21, no. 1 A, pp. 221–228, 2001. View at Scopus
  6. T. Kimoto, S. Arai, M. Kohguchi et al., “Apoptosis and suppression of tumor growth by Artepillin C extracted from Brazilian propolis,” Cancer Detection and Prevention, vol. 22, no. 6, pp. 506–515, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Basnet, T. Matsuno, and R. Neidlein, “Potent free radical scavenging activity of propol isolated from Brazilian propolis,” Zeitschrift für Naturforschung C, vol. 52, no. 11-12, pp. 828–833, 1997. View at Scopus
  8. Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Ito, F. R. Chang, H. K. Wang et al., “Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis,” Journal of Natural Products, vol. 64, no. 10, pp. 1278–1281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Burdock, “Review of the biological properties and toxicity of bee propolis (propolis),” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Bankova and N. Marekov, “Propolis-chemical composition and standardization,” Farmatsiya, vol. 32, pp. 8–18, 1984.
  12. C. Garcia-Vigueira, W. Greenaway, and F. Whatley, “Composition of propolis from two different Spanish regions,” Zeitschrift für Naturforschung C, vol. 47, pp. 634–637, 1992.
  13. B. Konig, “Plant sources of propolis,” Bee World, vol. 66, no. 4, pp. 136–139, 1985.
  14. Y. K. Park, S. M. Alencar, and C. L. Aguiar, “Botanical origin and chemical composition of Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 9, pp. 2502–2506, 2002.
  15. Y. K. Park, J. F. Paredes-Guzman, C. L. Aguiar, S. M. Alencar, and F. Y. Fujiwara, “Chemical constituents in Baccharis dracunculifolia as the main botanical origin of Southeastern Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 52, no. 5, pp. 1100–1103, 2004. View at Scopus
  16. M. C. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995. View at Scopus
  17. A. Daugsch, C. S. Moraes, P. Fort, and Y. K. Park, “Brazilian red propolis—chemical composition and botanical origin,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 435–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Castaldo and F. Capasso, “Propolis, an old remedy used in modern medicine,” Fitoterapia, vol. 73, supplement 1, pp. S1–S6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Crane, “The past and present importance of bee products to man,” in Bee Products—Properties, Applications, and Apitherapy, A. Mizrahi and Y. Lensky, Eds., pp. 1–13, Plenum Press, New York, NY, USA, 1997.
  20. A. S. Pereira, F. R. M. S. Seixas, and F. R. Aquino Neto, “Própolis: 100 anos de pesquisa e suas perspectivas futuras,” Química Nova, vol. 25, no. 2, pp. 321–326, 2002. View at Publisher · View at Google Scholar
  21. D. Suárez, D. Zayas, and F. Guisado, “Propolis: patents and technology trends for health applications,” Journal of Business Chemistry, vol. 2, no. 3, pp. 119–125, 2005.
  22. “Ministério do desenvolvimento da indústria e comércio,” http://aliceweb.mdic.gov.br.
  23. H. Aga, T. Shibuya, T. Sugimoto, M. Kurimoto, and S. Nakajima, “Isolation and identification of antimicrobial compounds in Brazilian propolis,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 5, pp. 945–946, 1994.
  24. W. Thomson, “Propolis,” Medical Journal of Australia, vol. 153, article 654, 1990.
  25. K. R. Markham, K. A. Mitchell, A. L. Wilkins, J. A. Daldy, and Y. Lu, “HPLC and GC-MS identification of the major organic constituents in New Zealand propolis,” Phytochemistry, vol. 42, no. 1, pp. 205–211, 1996. View at Scopus
  26. V. Bankova, G. Boudourova-Krasteva, J. M. Sforcin et al., “Phytochemical evidence for the plant origin of Brazilian propolis from Sao Paulo state,” Zeitschrift für Naturforschung C, vol. 54, no. 5-6, pp. 401–405, 1999. View at Scopus
  27. A. Kujumgiev, I. Tsvetkova, Y. Serkedjieva, V. Bankova, R. Christov, and S. Popov, “Antibacterial, antifungal and antiviral activity of propolis of different geographic origin,” Journal of Ethnopharmacology, vol. 64, no. 3, pp. 235–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kumazawa, T. Hamasaka, and T. Nakayama, “Antioxidant activity of propolis of various geographic origins,” Food Chemistry, vol. 84, no. 3, pp. 329–339, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Katircioǧlu and N. Mercan, “Antimicrobial activity and chemical compositions of Turkish propolis from different regions,” African Journal of Biotechnology, vol. 5, no. 11, pp. 1151–1153, 2006. View at Scopus
  30. V. Bankova, G. Boudourova-Krasteva, S. Popov, J. M. Sforcin, and S. R. C. Funari, “Seasonal vatiations of the chemical composition of Brazilian propolis,” Apidologie, vol. 29, no. 4, pp. 361–367, 1998. View at Scopus
  31. J. M. Sforcin, E. L. Novelli, and S. R. C. Funari, “Seasonal effect of Brazilian propolis on seric biochemical variables,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 8, pp. 244–254, 2000.
  32. S. Silici and S. Kutluca, “Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region,” Journal of Ethnopharmacology, vol. 99, no. 1, pp. 69–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. L. Castro, J. A. Cury, P. L. Rosalen et al., “Própolis do sudeste e nordeste do Brasil: influência da sazonalidade na atividade antibacteriana e composição fenólica,” Química Nova, vol. 30, pp. 1512–1521, 2007.
  34. V. S. Bankova, S. L. de Castro, and M. C. Marcucci, “Propolis: recent advances in chemistry and plant origin,” Apidologie, vol. 31, no. 1, pp. 3–15, 2000. View at Scopus
  35. Y. Xu, L. Luo, B. Chen, and Y. Fu, “Recent development of chemical components in propolis,” Frontiers of Biology in China, vol. 4, no. 4, pp. 385–391, 2009. View at Publisher · View at Google Scholar
  36. J. O. Schmidt, “Chemical composition and application,” in Bee Products—Properties, Applications, and Apitherapy, A. Mizrahi and Y. Lensky, Eds., pp. 15–26, New York, New York, NY, USA, 1997.
  37. E. Crane, Beekeping: Science, Practice and World Resources, Butterworth Heinemann, London, UK, 1988.
  38. V. Bankova, “Chemical diversity of propolis and the problem of standardization,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 114–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Christov, B. Trusheva, M. Popova, V. Bankova, and M. Bertrand, “Chemical composition of propolis from Canada, its antiradical activity and plant origin,” Natural Product Research, vol. 19, no. 7, pp. 673–678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Trusheva, M. Popova, V. Bankova et al., “Bioactive constituents of Brazilian red propolis,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 2, pp. 249–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. K. Park, M. Ikegaki, S. M. Alencar, and F. F. Moura, “Evaluation of Brazilian propolis by both physicochemical methods and biological activity,” Honeybee Science, vol. 21, no. 2, pp. 85–90, 2000.
  42. S. M. Alencar, T. L. C. Oldoni, M. L. Castro et al., “Chemical composition and biological activity of a new type of Brazilian propolis: red propolis,” Journal of Ethnopharmacology, vol. 113, no. 2, pp. 278–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. M. da Silva, M. C. de Souza, S. R. Matta, M. R. de Andrade, and F. V. N. Vidal, “Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities,” Food Chemistry, vol. 99, no. 3, pp. 431–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Salomão, P. R. S. Pereira, L. C. Campos et al., “Brazilian propolis: correlation between chemical composition and antimicrobial activity,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 3, pp. 317–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. I. S. R. Cabral, T. L. C. Oldoni, A. Prado, R. M. N. Bezerra, and S. M. Alencar, “Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira,” Química Nova, vol. 32, no. 6, pp. 1523–1527, 2009.
  46. E. Gregoris and R. Stevanato, “Correlations between polyphenolic composition and antioxidant activity of Venetian propolis,” Food and Chemical Toxicology, vol. 48, no. 1, pp. 76–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Righi, T. R. Alves, G. Negri, L. M. Marques, H. Breyer, and A. Salatino, “Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities,” Journal of the Science of Food and Agriculture, vol. 91, pp. 2363–2370, 2011.
  48. A. Ugur and T. Arslan, “An in vitro study on antimicrobial activity of propolis from Mugla Province of Turkey,” Journal of Medicinal Food, vol. 7, no. 1, pp. 90–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. L. C. Paviani, C. Dariva, M. C. Marcucci, and F. A. Cabral, “Supercritical carbon dioxide selectivity to fractionate phenolic compounds from the dry ethanolic extract of propolis,” Journal of Food Process Engineering, vol. 33, no. 1, pp. 15–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. V. S. Bankova, S. S. Popov, and N. L. Marekov, “A study on flavonoids of propolis,” Journal of Natural Products, vol. 46, no. 4, pp. 471–474, 1983. View at Scopus
  51. V. Bankova, A. Dyulgerov, S. Popov, and N. Marekov, “A GC/MS study of the propolis phenolic constituents,” Zeitschrift für Naturforschung C, vol. 42, pp. 147–151, 1987.
  52. G. Boudourova-Krasteva, V. Bankova, J. M. Sforcin, N. Nikolova, and S. Popov, “Phenolics from Brazilian propolis,” Zeitschrift für Naturforschung C, vol. 52, no. 9-10, pp. 676–679, 1997. View at Scopus
  53. M. C. Marcucci, J. Rodriguez, F. Ferreres, and V. Bankova, “Chemical composition of Brazilian propolis from Sao Paulo state,” Zeitschrift für Naturforschung C, vol. 53, no. 1-2, pp. 117–119, 1998. View at Scopus
  54. S. Tazawa, T. Warashina, and T. Noro, “Studies on the constituents of Brazilian propolis. II,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 10, pp. 1388–1392, 1999. View at Scopus
  55. S. Kumazawa, R. Ueda, T. Hamasaka, S. Fukumoto, T. Fujimoto, and T. Nakayama, “Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan,” Journal of Agricultural and Food Chemistry, vol. 55, no. 19, pp. 7722–7725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. L. Castro, A. M. D. Nascimento, M. Ikegaki, C. M. Costa-Neto, S. M. Alencar, and P. L. Rosalen, “Identification of a bioactive compound isolated from Brazilian propolis type 6,” Bioorganic and Medicinal Chemistry, vol. 17, no. 14, pp. 5332–5335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Lotti, M. C. Fernandez, A. L. Piccinelli, O. Cuesta-Rubio, I. M. Hernández, and L. Rastrelli, “Chemical constituents of red Mexican propolis,” Journal of Agricultural and Food Chemistry, vol. 58, no. 4, pp. 2209–2213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. P. Popova, K. Graikou, I. Chinou, and V. S. Bankova, “GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece,” Journal of Agricultural and Food Chemistry, vol. 58, no. 5, pp. 3167–3176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Petrova, M. Popova, C. Kuzmanova et al., “New biologically active compounds from Kenyan propolis,” Fitoterapia, vol. 81, no. 6, pp. 509–514, 2010. View at Publisher · View at Google Scholar
  60. B. Trusheva, M. Popova, E. B. Koendhori, I. Tsvetkova, C. Naydenski, and V. Bankova, “Indonesian propolis: chemical composition, biological activity and botanical origin,” Natural Product Research, vol. 25, no. 6, pp. 606–613, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. A. Shaheen, M. H. Zarga, I. K. Nazer, R. M. Darwish, and H. I. Al-Jaber, “Chemical constituents of Jordanian propolis,” Natural Product Research, vol. 25, no. 14, pp. 1312–1318, 2011. View at Publisher · View at Google Scholar
  62. C. Lotti, A. L. Piccineli, C. Arevalo, et al., “Constituents of Hondurian propolis with inhibitory effects on Saccharomyces cerevisiae multidrug resistance protein Pdr5p,” Journal of Agricultural and Food Chemistry, vol. 60, no. 42, pp. 10540–10545, 2012. View at Publisher · View at Google Scholar
  63. V. Bankova, R. Christov, S. Popov, O. Pureb, and G. Bocari, “Volatile constituents of propolis,” Zeitschrift für Naturforschung C, vol. 49, pp. 6–10, 1994.
  64. V. Bankova, R. Christov, A. Kujumgiev, M. C. Marcucci, and S. Popov, “Chemical composition and antibacterial activity of Brazilian propolis,” Zeitschrift für Naturforschung C, vol. 50, no. 3-4, pp. 167–172, 1995. View at Scopus
  65. E. Nagy, V. Papay, G. Litkei, and Z. Dinya, “Investigation of the chemical constituents, particularly the flavonoid components, of propolis and Populi gemma by GC/MS method,” Studies in Organic Chemistry, vol. 23, pp. 223–232, 1986.
  66. S. A. Popravko and M. V. Sokolov, “Plant sources of propolis,” Pchelovodstvo, vol. 2, pp. 28–29, 1980 (Russian).
  67. M. C. Marcucci and V. S. Bankova, “Chemical composition, plant origin and biological activity of Brazilian propolis,” Current Topics in Phytochemistry, vol. 2, pp. 115–123, 1999.
  68. F. A. Tomás-Barberán, C. García-Vigueira, P. Vit-Olivier, F. Ferreres, and F. Tomás-Lorente, “Phytochemical evidence for the botanical origin f tropical propolis from Venezuela,” Phytochemistry, vol. 34, no. 1, pp. 191–196, 1993. View at Publisher · View at Google Scholar
  69. O. Cuesta-Rubio, B. A. Frontana-Uribe, T. Ramírez-Apan, and J. Cárdenas, “Polyisoprenylated benzophenones in Cuban propolis; biological activity of nemorosone,” Zeitschrift für Naturforschung C, vol. 57, no. 3-4, pp. 372–378, 2002. View at Scopus
  70. B. Trusheva, M. Popova, H. Naydenski, I. Tsvetkova, J. G. Rodriguez, and V. Bankova, “New polyisoprenylated benzophenones from Venezuelan propolis,” Fitoterapia, vol. 75, no. 7-8, pp. 683–689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. K. Park, S. M. Alencar, A. R. P. Scamparini, and C. L. Aguiar, “Própolis produzida no Sul do Brasil, Argentina e Uruguai: evidências fitoquímicas de sua origem vegetal,” Ciência Rural, vol. 32, no. 6, pp. 997–1003, 2002.
  72. A. H. Banskota, Y. Tezuka, I. K. Adnyana et al., “Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis,” Phytomedicine, vol. 8, no. 1, pp. 16–23, 2001. View at Scopus
  73. T. Matsuno, Y. Matsumoto, M. Saito, and J. Mprikawa, “Antitumor benzopyran derivative of propolis,” Chemical Abstracts, vol. 126, Article ID 39814j, 1997.
  74. T. Matsuno, M. Saito, Y. Matsumoto, and J. Morikawa, “A new benzo-γ-pyran derivative isolated from propolis,” Zeitschrift für Naturforschung C, vol. 53, no. 11-12, pp. 1037–1039, 1998. View at Scopus
  75. T. Hashimoto, H. Aga, A. Tabuchi et al., “Anti-Helicobacter pylori compounds in Brazilian propolis,” Natural Medicines, vol. 52, no. 6, pp. 518–520, 1998. View at Scopus
  76. D. Grunberger, R. Banerjee, K. Eisinger et al., “Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis,” Experientia, vol. 44, no. 3, pp. 230–232, 1988. View at Scopus
  77. O. K. Mirzoeva and P. C. Calder, “The effect of propolis and its components on eicosanoid production during the inflammatory response,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 55, no. 6, pp. 441–449, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Konig and J. H. Dustmann, “Fortschritte der celler untersuchungen zur antivirotischen aktivität von propolis,” Apidologie, vol. 15, pp. 228–230, 1985.
  79. V. R. Villanueva, M. Barbier, M. Gonnet, and P. Lavie, “The flavonoids of propolis. Isolation of a new bacteriostatic substance: pinocembrin (dihydroxy-5, 7 flavanone),” Annales de l'Institut Pasteur, vol. 118, no. 1, pp. 84–87, 1970. View at Scopus
  80. J. Metzner, E. M. Schneidewind, and E. Friedrich, “On the effects of propolis and pinocembrin on blastomyces,” Pharmazie, vol. 32, no. 11, p. 730, 1977. View at Scopus
  81. P. Basnet, K. Matsushige, K. Hase, S. Kadota, and T. Namba, “Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models,” Biological and Pharmaceutical Bulletin, vol. 19, no. 11, pp. 1479–1484, 1996. View at Scopus
  82. M. Paintz and J. Metzner, “Zur iokalanästhetischen wirkung von propolis und einigen Inhaltsstoffen,” Pharmazie, vol. 34, pp. 839–841, 1979.
  83. M. Miyakado, T. Kato, N. Ohno, and T. J. Mabry, “Pinocembrin and (+)-β-eudesmol from Hymenoclea monogyra and Baccharis glutinosa,” Phytochemistry, vol. 15, no. 5, p. 846, 1976. View at Scopus
  84. K. Hayashi, S. Komura, N. Isaji, N. Ohishi, and K. Yagi, “Isolation of antioxidative compounds from Brazilian propolis: 3,4-dihydroxy-5-prenylcinnamic acid, a novel potent antioxidant,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 11, pp. 1521–1524, 1999. View at Scopus
  85. T. Kimoto, S. Koya-Miyata, K. Hino et al., “Pulmonary carcinogenesis induced by ferric nitrilotriacetate in mice and protection from it by Brazilian propolis and artepillin C,” Virchows Archiv, vol. 438, no. 3, pp. 259–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Akao, H. Maruyama, K. Matsumoto et al., “Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines,” Biological and Pharmaceutical Bulletin, vol. 26, no. 7, pp. 1057–1059, 2003. View at Scopus
  87. Y. K. Park, I. Fukuda, H. Ashida et al., “Suppression of dioxin mediated aryl hydrocarbon receptor transformation by ethanolic extracts of propolis,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 4, pp. 935–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Russo, V. Cardile, F. Sanchez, N. Troncoso, A. Vanella, and J. A. Garbarino, “Chilean propolis: antioxidant activity and antiproliferative action in human tumor cell lines,” Life Sciences, vol. 76, no. 5, pp. 545–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Inokuchi, M. Shimazawa, Y. Nakajima, S. Suemori, S. Mishima, and H. Hara, “Brazilian green propolis protects against retinal damage in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 1, pp. 71–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Li, A. Kapur, J. X. Yang et al., “Antiproliferation of human prostate cancer cells by ethanolic extracts of Brazilian propolis and its botanical origin,” International Journal of Oncology, vol. 31, no. 3, pp. 601–606, 2007. View at Scopus
  91. T. Shimizu, A. Hino, A. Tsutsumi, K. P. Yong, W. Watanabe, and M. Kurokawa, “Anti-influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice,” Antiviral Chemistry and Chemotherapy, vol. 19, no. 1, pp. 7–13, 2008. View at Scopus
  92. R. M. Darwish, R. J. A. Fares, M. H. A. Zarga, and I. K. Nazer, “Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria,” African Journal of Biotechnology, vol. 9, no. 36, pp. 5966–5974, 2010. View at Scopus
  93. B. Kouidhi, T. Zmantar, and A. Bakhrouf, “Anti-cariogenic and anti-biofilms activity of Tunisian propolis extract and its potential protective effect against cancer cells proliferation,” Anaerobe, vol. 16, no. 6, pp. 566–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. K. W. Cheung, D. M. Y. Sze, W. K. Chan, R. X. Deng, W. Tu, and G. C. F. Chan, “Brazilian green propolis and its constituent, artepellin C inhibits allogenic activated human CD4 T cells expansion and activation,” Journal of Ethnopharmacology, vol. 138, no. 2, pp. 463–471, 2011.
  95. M. J. Valente, A. F. Baltazar, R. Henrique, L. Estevinho, and M. Carvalho, “Biological activities of Portuguese propolis: protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro,” Food and Chemical Toxicology, vol. 49, no. 1, pp. 86–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Shvarzbeyn and M. Huleihel, “Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax,” Antiviral Research, vol. 90, no. 3, pp. 108–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Kamiya, H. Nishihara, H. Hara, and T. Adachi, “Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-3 cells through endoplasmic reticulum stress,” Journal of Agricultural and Food Chemistry, vol. 60, no. 44, pp. 11065–11070, 2012. View at Publisher · View at Google Scholar
  98. G. C. Franchi Jr., C. S. Moraes, V. C. Toreti, A. Daugsch, A. E. Nowill, and Y. K. Park, “Comparison of effects of the ethanolic extracts of Brazilian propolis on human leukemic cells as assessed with the MTT assay,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 918956, 6 pages, 2012. View at Publisher · View at Google Scholar
  99. C. P. Chuu, H. P. Lin, M. F. Ciacco, et al., “Caffeic acid phenethyl ester suppresses the proliferation on human prostate cancer cells through inhibition of p70S6K and Akt signaling networks,” Cancer Prevention Research, vol. 5, no. 5, pp. 788–797, 2012. View at Publisher · View at Google Scholar
  100. K. Yasukawa, S. Y. Yu, S. Tsutsumi, M. Kurokawa, and Y. K. Park, “Inhibitory effects of Brazilian propolis on tumor promotion in two-stage mouse skin carcinogenesis,” Journal of Pharmacy and Nutrition Sciences, vol. 2, pp. 71–76, 2012.
  101. R. Zukowska-Markiewicz, M. H. Borawska, A. Fiedorowicz, S. K. Naliwajko, D. Sawicka, and H. Car, “Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line,” Evidence-Based Complementary and Alternative Medicine, vol. 13, article 50, 2013. View at Publisher · View at Google Scholar
  102. K. Ikeno, T. Ikeno, and C. Miyazawa, “Effects of propolis on dental caries in rats,” Caries Research, vol. 25, no. 5, pp. 347–351, 1991. View at Scopus
  103. H. Koo, P. L. Rosalen, J. A. Cury, Y. K. Park, M. Ikegaki, and A. Sattler, “Effect of Apis mellifera propolis from two Brazilian regions on caries development in desalivated rats,” Caries Research, vol. 33, no. 5, pp. 393–400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Koo, A. M. Vacca Smith, W. H. Bowen, P. L. Rosalen, J. A. Cury, and Y. K. Park, “Effects of Apis mellifera propolis on the activities of streptococcal glucosyltransferases in solution and adsorbed onto saliva-coated hydroxyapatite,” Caries Research, vol. 34, no. 5, pp. 418–426, 2000. View at Scopus
  105. H. Koo, B. P. F. A. Gomes, P. L. Rosalen, G. M. B. Ambrosano, Y. K. Park, and J. A. Cury, “In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens,” Archives of Oral Biology, vol. 45, no. 2, pp. 141–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Koo, J. A. Cury, P. L. Rosalen, G. M. B. Ambrosano, M. Ikegaki, and Y. K. Park, “Effect of a mouthrinse containing selected propolis on 3-day dental plaque accumulation and polysaccharide formation,” Caries Research, vol. 36, no. 6, pp. 445–448, 2002. View at Scopus
  107. H. Koo, P. L. Rosalen, J. A. Cury et al., “Effect of a new variety of Apis mellifera propolis on mutans streptococci,” Current Microbiology, vol. 41, no. 3, pp. 192–196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Koo, S. K. Pearson, K. Scott-Anne et al., “Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats,” Oral Microbiology and Immunology, vol. 17, no. 6, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Koo, B. Schobel, K. Scott-Anne et al., “Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries,” Journal of Dental Research, vol. 84, no. 11, pp. 1016–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. M. F. Hayacibara, H. Koo, P. L. Rosalen et al., “In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 110–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Duarte, P. L. Rosalen, M. F. Hayacibara et al., “The influence of a novel propolis on mutans streptococci biofilms and caries development in rats,” Archives of Oral Biology, vol. 51, no. 1, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. S. A. D. C. Duailibe, A. G. Gonçalves, and F. J. M. Ahid, “Effect of a propolis extract on Streptococcus mutans counts in vivo,” Journal of Applied Oral Science, vol. 15, no. 5, pp. 420–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Kini, C. S. Kini, B. H. Kim et al., “Antimicrobial effect of Korean propolis against the mutans streptococci isolated from Korean,” Journal of Microbiology, vol. 49, no. 1, pp. 161–164, 2011. View at Publisher · View at Google Scholar