About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 731370, 14 pages
http://dx.doi.org/10.1155/2013/731370
Research Article

A Module Analysis Approach to Investigate Molecular Mechanism of TCM Formula: A Trial on Shu-feng-jie-du Formula

1Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
3Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China

Received 12 September 2013; Revised 8 October 2013; Accepted 11 October 2013

Academic Editor: Aiping Lv

Copyright © 2013 Jianglong Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zhao, P. Jiang, and W. Zhang, “Molecular networks for the study of TCM pharmacology,” Briefings in Bioinformatics, vol. 11, no. 4, Article ID bbp063, pp. 417–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sams-Dodd, “Target-based drug discovery: is something wrong?” Drug Discovery Today, vol. 10, no. 2, pp. 139–147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. R. Zimmermann, J. Lehár, and C. T. Keith, “Multi-target therapeutics: when the whole is greater than the sum of the parts,” Drug Discovery Today, vol. 12, no. 1-2, pp. 34–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. L. Leung, Z. W. Cao, Z. H. Jiang, H. Zhou, and L. Liu, “Network-based drug discovery by integrating systems biology and computational technologies,” Briefings in Bioinformatics, vol. 14, no. 4, pp. 491–505, 2013. View at Publisher · View at Google Scholar
  5. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Knox, V. Law, T. Jewison et al., “Drugbank 3.0: a comprehensive resource for “Omics” research on drugs,” Nucleic Acids Research, vol. 39, no. 1, pp. D1035–D1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg, “The database of interacting proteins: 2004 update,” Nucleic Acids Research, vol. 32, pp. D449–D451, 2004. View at Scopus
  8. A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery,” Nature Chemical Biology, vol. 4, no. 11, pp. 682–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. V. Paolini, R. H. B. Shapland, W. P. van Hoorn, J. S. Mason, and A. L. Hopkins, “Global mapping of pharmacological space,” Nature Biotechnology, vol. 24, no. 7, pp. 805–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Cokol, H. N. Chua, M. Tasan et al., “Systematic exploration of synergistic drug pairs,” Molecular Systems Biology, vol. 7, article 544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Suthram, J. T. Dudley, A. P. Chiang, R. Chen, T. J. Hastie, and A. J. Butte, “Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets,” PLoS Computational Biology, vol. 6, no. 2, Article ID e1000662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Lu, W. Pan, Y. J. Hu, and Y. T. Wang, “Multi-target drugs: the trend of drug research and development,” PLoS ONE, vol. 7, no. 6, Article ID e40262, 2012. View at Publisher · View at Google Scholar
  13. M. A. Yildirim, K. I. Goh, M. E. Cusick, A. L. Barabasi, and M. Vidal, “Drug—target network,” Nature Biotechnology, vol. 25, pp. 1119–1126, 2007. View at Publisher · View at Google Scholar
  14. J. Jia, F. Zhu, X. Ma, Z. W. Cao, Y. X. Li, and Y. Z. Chen, “Mechanisms of drug combinations: interaction and network perspectives,” Nature Reviews Drug Discovery, vol. 8, no. 2, pp. 111–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Sun, R. Zhu, H. Ye, et al., “Towards a bioinformatics analysis of anti-alzheimer’s herbal medicines from a target network perspective,” Briefings in Bioinformatics, vol. 14, no. 3, pp. 327–343, 2013. View at Publisher · View at Google Scholar
  16. L. Wang, G.-B. Zhou, P. Liu et al., “Dissection of mechanisms of Chinese medicinal formula realgar-indigo naturalis as an effective treatment for promyelocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4826–4831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Li, B. Zhang, and N. Zhang, “Network target for screening synergistic drug combinations with application to traditional Chinese medicine,” BMC Systems Biology, vol. 5, no. 1, article S10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Li, B. Zhang, D. Jiang, Y. Wei, and N. Zhang, “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, no. 11, article S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. G. A. Konietzny, L. Dietz, and A. C. McHardy, “Inferring functional modules of protein families with probabilistic topic models,” BMC Bioinformatics, vol. 12, article 141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller, “Identifying functional modules in protein-protein interaction networks: an integrated exact approach,” Bioinformatics, vol. 24, no. 13, pp. i223–i231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3–5, pp. 75–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Enright, S. van Dongen, and C. A. Ouzounis, “An efficient algorithm for large-scale detection of protein families,” Nucleic Acids Research, vol. 30, no. 7, pp. 1575–1584, 2002. View at Scopus
  25. P. Jiang and M. Singh, “SPICi: a fast clustering algorithm for large biological networks,” Bioinformatics, vol. 26, no. 8, Article ID btq078, pp. 1105–1111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Johnson and G. Maggiora, Concepts and Applications of Molecular Similarity, Wiley-Interscience, 1990.
  27. N. M. O'Boyle, C. Morley, and G. R. Hutchison, “Pybel: a python wrapper for the ppenbabel cheminformatics toolkit,” Chemistry Central Journal, vol. 2, no. 1, article 5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Wu, R. Jiang, M. Q. Zhang, and S. Li, “Network-based global inference of human disease genes,” Molecular Biology of Disease, vol. 4, article 189, 2008. View at Publisher · View at Google Scholar
  29. S. Zhao and S. Li, “Network-based relating pharmacological and genomic spaces for drug target identification,” PLoS ONE, vol. 5, no. 7, Article ID e11764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, “Prediction of drug-target interaction networks from the integration of chemical and genomic spaces,” Bioinformatics, vol. 24, no. 13, pp. i232–i240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. H. Morris, L. Apeltsin, A. M. Newman et al., “Clustermaker: a multi-algorithm clustering plugin for cytoscape,” BMC Bioinformatics, vol. 12, article 436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, Article ID btq675, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E, vol. 69, no. 2, Article ID 026113, 15 pages, 2004. View at Publisher · View at Google Scholar
  34. M. E. J. Newman, “Modularity and community structure in networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8577–8582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Ekins, A. Bugrim, L. Brovold et al., “Algorithms for network analysis in systems-ADME/Tox using the metacore and metadrug platforms,” Xenobiotica, vol. 36, no. 10-11, pp. 877–901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. P. Davis, T. C. Wiegers, R. J. Johnson, et al., “Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database,” PLoS ONE, vol. 8, no. 4, Article ID e58201, 2013. View at Publisher · View at Google Scholar
  37. A. Chatr-aryamontri, B. J. Breitkreutz, S. Heinicke, et al., “The BioGRID interaction database: 2013 update,” Nucleic Acids Research, vol. 41, pp. D816–D823, 2013. View at Publisher · View at Google Scholar
  38. J. Dong and S. Horvath, “Understanding network concepts in modules,” BMC Systems Biology, vol. 1, article 24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. V. M. Savov, A. S. Galabov, L. P. Tantcheva et al., “Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection,” Experimental and Toxicologic Pathology, vol. 58, no. 1, pp. 59–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Chen, Z. Y. Jiang, B. Yu, et al., “Study on the anti-h1n1 virus effects of quercetinand oseltamivir and their mechanism related to tlr7 pathway,” Journal of Asian Natural Products Research, vol. 14, no. 9, pp. 877–885, 2012. View at Publisher · View at Google Scholar
  41. H. J. Choi, J. H. Song, K. S. Park, and D. H. Kwon, “Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication,” European Journal of Pharmaceutical Sciences, vol. 37, no. 3-4, pp. 329–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Kim, S. Narayanan, and K.-O. Chang, “Inhibition of influenza virus replication by plant-derived isoquercetin,” Antiviral Research, vol. 88, no. 2, pp. 227–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. T. Palamara, L. Nencioni, K. Aquilano et al., “Inhibition of influenza A virus replication by resveratrol,” Journal of Infectious Diseases, vol. 191, no. 10, pp. 1719–1729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Sithisarn, M. Michaelis, M. Schubert-Zsilavecz, and J. Cinatl Jr., “Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells,” Antiviral Research, vol. 97, no. 1, pp. 41–48, 2013. View at Publisher · View at Google Scholar
  45. J. P. Dai, X. F. Zhao, J. Zeng, et al., “Drug screening for autophagy inhibitors based on the dissociation of beclin1-bcl2 complex using bifc technique and mechanism of eugenol on anti-influenza A virus activity,” PLoS ONE, vol. 8, no. 4, Article ID e61026, 2013. View at Publisher · View at Google Scholar
  46. Y. Wang, T. Romigh, X. He et al., “Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines,” Human Molecular Genetics, vol. 19, no. 22, Article ID ddq354, pp. 4319–4329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Savio, T. Coppa, L. Bianchi et al., “The resveratrol analogue 4,4′-dihydroxy-trans-stilbene inhibits cell proliferation with higher efficiency but different mechanism from resveratrol,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 12, pp. 2493–2502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Schubert, U. Eriksson, B. Edgar, G. Cullberg, and T. Hedner, “Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17β-estradiol,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 20, no. 3, pp. 219–224, 1995. View at Scopus
  49. M. K. Buening, R. L. Chang, and M. T. Huang, “Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids,” Cancer Research, vol. 41, no. 1, pp. 67–72, 1981. View at Scopus
  50. X. Xiao, D. Shi, L. Liu et al., “Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling,” PLoS ONE, vol. 6, no. 8, Article ID e22934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Haskó, D. G. Kuhel, J.-F. Chen et al., “Adenosine inhibits IL-12 and TNF-α production via adenosine A(2a) receptor-dependent and independent mechanism,” The FASEB Journal, vol. 14, no. 13, pp. 2065–2074, 2000. View at Scopus
  52. D. Yang, T. Yaguchi, T. Nakano, and T. Nishizaki, “Adenosine-induced caspase-3 activation by tuning Bcl-XL/DIABLO/ IAP expression in HuH-7 human hepatoma cells,” Cell Biology and Toxicology, vol. 26, no. 4, pp. 319–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Fulda, C. Friesen, M. Los et al., “Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors,” Cancer Research, vol. 57, no. 21, pp. 4956–4964, 1997. View at Scopus
  54. W. Li, M. Ashok, J. Li, H. Yang, A. E. Sama, and H. Wang, “A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1,” PLoS ONE, vol. 2, no. 11, Article ID e1153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. K.-M. Lee, M. Yeo, J.-S. Choue et al., “Protective mechanism of epigallocatechin-3-gallate against Helicobocter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling,” Helicobacter, vol. 9, no. 6, pp. 632–642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Jiang, Q. Wang, S. Chen, et al., “Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein,” Journal of Virology, vol. 87, no. 6, pp. 3039–3052, 2013. View at Publisher · View at Google Scholar
  57. J. L. Koff, M. X. G. Shao, I. F. Ueki, and J. A. Nadel, “Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 294, no. 6, pp. L1068–L1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Vittal, L. Fan, D. S. Greenspan, E. A. Mickler, and B. Gopalakrishnan, “Il-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 304, pp. L401–L414, 2013. View at Publisher · View at Google Scholar
  59. W. Li, G. Wang, H. Zhang, et al., “Inability of NS1 protein froman H5N1 influenza virus to activate pi3k/akt signaling pathway correlates to the enhanced virus replication upon pi3k inhibition,” Veterinary Research, vol. 43, article 36, 2012.
  60. K. K. Singh, P. C. Shukla, A. Quan, et al., “Brca1 is a novel target to improve endothelial dysfunction and retard atherosclerosis,” The Journal of Thoracic and Cardiovascular Surgery, vol. 146, no. 4, pp. 949–960, 2013. View at Publisher · View at Google Scholar
  61. M. Jutel, M. Akdis, and C. A. Akdis, “Histamine, histamine receptors and their role in immune pathology,” Clinical and Experimental Allergy, vol. 39, no. 12, pp. 1786–1800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. D. P. Robinson, M. E. Lorenzo, W. Jian, and S. L. Klein, “Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses,” PLoS Pathogens, vol. 7, no. 7, Article ID e1002149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Hahon and J. A. Booth, “Benzo[a]pyrene metabolites: effects on viral interferon induction,” Journal of Interferon Research, vol. 6, no. 5, pp. 591–602, 1986. View at Scopus
  64. K. Mizumura, S. Hashimoto, S. Maruoka et al., “Role of mitogen-activated protein kinases in influenza virus inducti on of prostaglandin E2 from arachidonic acid in bronchial epithelial cells,” Clinical and Experimental Allergy, vol. 33, no. 9, pp. 1244–1251, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Guan, W. Yang, X. Sun et al., “Association of influenza virus infection and inflammatory cytokines with acute myocardial infarction,” Inflammation Research, vol. 61, no. 6, pp. 591–598, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Silke and P. Meier, “Inhibitor of apoptosis (iap) proteins-modulators of cell death and inflammation,” Cold Spring Harbor Perspectives in Biology, vol. 5, no. 2, Article ID a008730, 2013. View at Publisher · View at Google Scholar
  67. R. J. Lowy, “Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms,” International Reviews of Immunology, vol. 22, no. 5-6, pp. 425–449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Zamiri, S. Masli, J. W. Streilein, and A. W. Taylor, “Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation,” Investigative Ophthalmology & Visual Science, vol. 47, no. 9, pp. 3912–3918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. A. Hirota, P. R. Hiebert, M. Gold, et al., “Granzyme B deficiency exacerbates lung inflammation in mice following acute lung injury,” American Journal of Respiratory Cell and Molecular Biology, vol. 49, no. 3, pp. 453–462, 2013. View at Publisher · View at Google Scholar
  70. A. Gomez-Munoz, P. Gangoiti, L. Arana, et al., “New insights on the role of ceramide 1-phosphate in inflammation,” Biochimica et Biophysica Acta, vol. 1831, no. 6, pp. 1060–1066, 2013. View at Publisher · View at Google Scholar
  71. E. C. Roberson, J. E. Tully, A. S. Guala et al., “Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 46, no. 5, pp. 573–581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Herold, W. von Wulffen, M. Steinmueller et al., “Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: impact of chemokines and adhesion molecules,” Journal of Immunology, vol. 177, no. 3, pp. 1817–1824, 2006. View at Scopus
  73. E. Delorme-Axford and C. B. Coyne, “The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells,” Viruses, vol. 3, no. 12, pp. 2462–2477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Moisy, S. V. Avilov, Y. Jacob, et al., “HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication,” Journal of Virology, vol. 86, no. 17, pp. 9122–9133, 2012. View at Publisher · View at Google Scholar
  75. N. Lee, C. K. Wong, D. S. Hui, et al., “Role of human toll-like receptors in naturally occurring influenza a infections,” Influenza and Other Respiratory Viruses, vol. 7, no. 5, pp. 666–675, 2013. View at Publisher · View at Google Scholar
  76. X. Q. Hou, Y. W. Gao, S. T. Yang, C. Y. Wang, Z. Y. Ma, and X. Z. Xia, “Role of macrophage migration inhibitory factor in influenza H5N1 virus pneumonia,” Acta Virologica, vol. 53, no. 4, pp. 225–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. K.-W. Lee, H. J. Kim, Y. S. Lee et al., “Acteoside inhibits human promyelocytic HL-60 leukemia cell proliferation via inducing cell cycle arrest at G0/G1 phase and differentiation into monocyte,” Carcinogenesis, vol. 28, no. 9, pp. 1928–1936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Khatri, M. Sirota, and A. J. Butte, “Ten years of pathway analysis: current approaches and outstanding challenges,” PLoS Computational Biology, vol. 8, no. 2, Article ID 100237, 2012. View at Publisher · View at Google Scholar